• Title/Summary/Keyword: Temperature test equipment

Search Result 330, Processing Time 0.034 seconds

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

Improvement on Surface Properties of Engineering Plastic with Adding Micro-$Al_2O_3$, Nano-$Al(OH)_3$ (Micro-$Al_2O_3$와 Nano-$Al(OH)_3$ 첨가에 따른 엔지니어링 플라스틱의 표면특성 개선)

  • Jung, Eui-Hwan;Lee, Han-Ju;Lim, Kee-Joe;Heo, Jun;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.29-29
    • /
    • 2010
  • Surface contamination and leakage current have caused operating problems. A flashover in a substation may result in destruction of an insulator or many others electrical equipment. Engineering plastics have good characteristic (light weight, good productivity and little of void) as compare with epoxy or porcelain insulators. Outdoor insulator must have resistance to contamination. However, it isn't suited to outdoor insulator because it is not hydrophobic. RTV(Room temperature vulcanizing) has a good property of hydrophobic and micro-filler. nano-filler have characteristics of obstructing exothermic reaction. In order to reduce the incidence of insulator flashover and damage, the silicon rubber contained with micro, nano-filler coating on surface of engineering plastics. In this paper, it compares tracking resistance, leakage current of the engineering plastic coated RTV with that of non-coated engineering plastic. And filled-composites performed much better than non-filled composites.

  • PDF

A Procedure for Robust Evolutionary Operations

  • Kim, Yongyun B.;Byun, Jai-Hyun;Lim, Sang-Gyu
    • International Journal of Quality Innovation
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product. It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the response variable should be small and stable in the region of the process operation. However, it is often the case that process noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials, ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences between the process operating conditions.

  • PDF

Failure Rate Model of External Environment Maintenance for a System under Severe Environment (가혹환경 하에서 사용되는 시스템의 외부환경보수에 대한 고장률 모형)

  • Park, J.H.;Shin, Y.J.;Lee, S.C.;Lie, C.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • The failure rate model of External Environment Maintenance(EEM) for a system under severe environment is investigated. EEM, which is recently introduced concept, is a maintenance activity controlling external environment factors that potentially cause system failure such as cleaning equipment, controlling temperature (humidity) and removing dust inside of electronic appliances. EEM can not have any influence on the inherent failure rate of a system but reduce the severity of the external environment causing failure since it deals with only external environment factors. Therefore, we propose two failure rate models to express the improvement effect of EEM: The intensity reduction model and age reduction model. The intensity and age reduction models of EEM are developed assuming the quality of improvement effect is proportioned to an extra intensity or age respectively. The validation of proposed failure rate models is performed in order of data generation, parameter estimation and test for goodness-of-fit.

Reliability Evaluation of a Motor Core Applied Ultrasound Infrared Thermography Technique (초음파 적외선열화상 기법을 적용한 모터 코어의 신뢰성 평가)

  • Jung, Yoon-Soo;Roh, Chi-Sung;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • This study used an ultrasound infrared thermography technique to detect issues in the motor core of typical power equipment. The current defect inspection method of the motor core is often incomplete (due to the limits of visual inspection) and thus the reliability of the motor core is reduced. Therefore, in this study, experiments were carried out to increase the reliability of the test by using an ultrasonic infrared thermal non-destructive inspection method to image the motor core. The ambient temperature of the experimental system was maintained at $25^{\circ}C$. Experiments were carried out to examine a damaged motor core and a defect-free motor core. Experimental results confirm the technique clearly detected defects in the motor core, thereby confirming the possibility of using this technique in the field.

Wide-Width Tensile Strength Properties of Geogrids according to Specimen Length and Testing Speed (시료크기 및 인장속도에 따른 지오그리드의 광폭인장강도 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • The tensile properties of geogrid are affected by such factors as temperature, specimen length, gauge length, testing speed and measuring equipment. The tensile strength of geogrids can be determined by ASTM 06637 and ISO 10319. The main differences between two testing methods are testing speed and specimen length. This paper presents the results of the wide-width tensile tests for three geogrids according to different specimen length and tension speed.

  • PDF

The Study on the Cavitation Erosion Behavior of Hardfacing Alloys for Nuclear Power Plants (원전 밸브용 경면처리 합금의 캐비테이션 에로젼 (cavitation erosion) 거동에 관한 연구)

  • O, Yeong-Min;Kim, Yun-Gap;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.308-316
    • /
    • 2002
  • The cavitation erosion behavior of wear-resistant hardfacing alloys such as Co-base Stellite 6, Fe-base Norem 02 and new Fe-base alloy were investigated up to 50 hours by using a 20kHz vibratory cavitation erosion test equipment. The crack, initiated easily at the interfaces between matrix and hard second phase, was repressed effectively in Stellite 6 because the matrix was hardened by phase transformation. For this reason, Stellite 6 showed an excellent cavitation erosion resistance compared to Norem 02. The phase transformation also occurred in Norem 02, but the increase of volume fraction of the interfaces caused the crack to be initiated frequently, thus resulting in a 1arge material loss. The matrix of NewAlloy was hardened effectively by vlongrightarrow$\alpha$' phase transformation and the volume fraction of the interfaces was very small compared to Norem 02. This caused the propagation of crack to the matrix to be repressed effectively. Therefore, NewAlloy showed a very excellent cavitation erosion resistance. It wasn't considered that the cavitation erosion resistance of NewAlloy was influenced the temperature of the bath filled with a distilled water up to $80^{\circ}C$.

ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

  • Kim, Ju Hyun;Yoo, Kwae Hwan;Na, Man Gyun;Kim, Jin Weon;Kim, Kyeong Suk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.225-234
    • /
    • 2014
  • Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs) and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR) thermography and a cooling device. Finite element analysis (FEA) was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

The mechanical design and fabrication of 162.5 MHz buncher for China accelerator driven sub-critical system injector II

  • Niu, Haihua;Li, Youtang;He, Yuan;Zhang, Bin;Huang, Shichun;Yuan, Chenzhang;Jia, Huan;Zhang, Shenghu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1071-1078
    • /
    • 2017
  • A buncher is one of the main pieces of equipment in the medium energy beam transport line (MEBT) for China accelerator driven sub-critical system (C-ADS) Injector II. To focus the beam longitudinally and match the beam for the acceptance of the superconducting linac section, two room temperature quarter wave resonator (QWR) bunchers with frequency of 162.5 MHz have been designed as parts of the MEBT. According to the beam transmission matching of the MEBT and the geometric parameters requirements of bunchers, the unique mechanical structure and the main processing technology of buncher cavities and their couplers and tuners are described in this paper. The fabrication of bunchers and their parts have been completed and tested at high power, the test results agree well with the design requirements. These bunchers work well for about two years in Institute of Modern Physics, Chinese Academy of Sciences.