• Title/Summary/Keyword: Temperature stress

Search Result 5,146, Processing Time 0.044 seconds

The Study for Cell Morphology with Gas Cocktail in Microcellular Foaming Process (초미세 발포 공법 시 가스 혼합에 따른 셀 형상 연구)

  • Cha Sung Woon;Yoon Jae Dong;Lee Yoon Sung;Kim Hak Bin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.168-174
    • /
    • 2005
  • Nowadays, the companies use polymer materials for many purposes fur they have many advantages. The costs of these materials take up too high a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2,\;N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. In previous research, many facts of microcellular foaming process are founded its characteristics. But previous researcher found the characteristics of microcellular foaming process with pure gas, for example $CO_2,\;N_2$ and so on, they did not found the characteristics of microcellular foaming process with one more gases. If one more gases inlet the resin, the characteristics of microcellular foaming process is changed very amazingly. In this paper, discuss on the characteristics of microcellular foaming process wi th gas cocktail about cell morphology.

A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass using micro-forging and finite element method application (Zr 계 벌크비정질합금의 마이크로 단조를 이용한 미세 성형성 평가와 유한요소해석 적용에 관한 연구)

  • Kang S.G.;Na Y.S.;Park K.Y.;Son S.C.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.589-592
    • /
    • 2005
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro-formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values $(=A_f/A_g)$, where Ag is cross-sectional area of U groove, and $A_f$ the filled area by material. Microforging process was simulated and analyzed by applying finite element method. FEM simulation results should reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM Simulation using DEFORM was confirmed to be applicable for the micro-forming process simulation.

  • PDF

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel (경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발)

  • Kim, Hyo Chan;Yang, Yong Sik;Koo, Yang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.

Electrochemical Combined-Stress Degradation Test and Failure Mechanisms of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM 고무의 전기화학적 복합노화시험 및 고장메커니즘)

  • Kwak, Seung Bum;Choi, Nak Sam;Shin, Sei Moon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Coolant rubber hoses for automotive radiators can degrade under thermal and mechanical loadings and thus fail owing to the influences of locally formed electricity. In this study, an advanced test method was developed to simulate the failure of a rubber hose. The aging behavior of carbon-black-filled ethylene-propylene diene monomer (EPDM) rubber used as a radiator hose material under a combination of electrochemical stresses and tensile strain was analyzed. The changing behaviors of the current and the resistance as a function of the aging time were analyzed in consideration of the tensile strain, voltage, and aging temperature. Sectioned specimens clarified the failure mechanisms of the aged skin layer under the combined electrochemical stresses.

Development of Naturally Degradable "Rice Polymer" For Organic Weed Management of Red Pepper and Rice

  • Kang, C.K.;Nam, H.S.;Lee, Y.K.;Lee, S.B.;Lee, B.M.;Oh, Y.J.;Jee, H.J.;Hong, M.K.;Jung, K.W.;Lee, Y.J.;Choi, Y.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.119-122
    • /
    • 2011
  • Among the developed bio-degradable polymer films as compared with transparent film(White), black polymer film was significantly more effective for controlling weeds in red pepper. Also, we found that white and black polymer mulching had 81.8% and 97.9% of managing weed controlling effects in rice, respectively. Compared to non-mulched rice paddy with water supply, the non-mulched rice paddy without any water supply has stopped its growth at 41 days after transplanting, while polymer-mulched rice paddy without water supply had about 60% of normally growing rice plants. This shows the polymer treatment has a remarkable effect on water and power saving, solution of herbicidal resistance, avoidance of herbicidal influence to eco-system etc. When the naturally decomposing polymer was used, a temperature was elevated as high as $4.7^{\circ}C$ on maximum and $2.6^{\circ}C$ on average. Also the naturally decomposing polymer accelerated rooting by 7 days and lowered a stress level from transplanting. The weed control effect mulched by polymer was remarkable as 98.7%. The polymer now, after 294 days treated on the rice paddy, has been completely decomposed.

Analysis of the Effect on the Process Parameters for the Thin Ceramic Plate in the Ceramic Injection Molding (판상제품의 세라믹 사출 시 공정변수 영향 분석)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2587-2593
    • /
    • 2014
  • Ceramic Injection Molding (CIM) is one of wide used processes in industry field and the applications are gradually being expanded to parts of medical and electric devices. In this study, the CIM process were analyzed with FEM and process parameters were studied and analyzed the effect on product quality. The shape of simple flat plate was compared to the shapes with the hole, with the round corner portion or with the side wall portion. If there are holes then the hole around the uneven density distribution and the defects such as weld lines could be occurred. The Large radius of the corners of the product give good formability and fluidity. Not only the shape parameters of product but also the process parameters during CIM are studied. The simulation results showed that the process parameters of temperature, initial fractions and velocity are important design parameters to improve the quality of products.

A Study on the Heated Edible Oils( I ) -Flow Properties of Soybean, Rapeseed, Rice bran, Corn and Perilla Oils- (가열식용유(加熱食用油)에 관(關)한 연구(硏究) ( I ) -대두(大豆), 채종(菜種), 미당(米糖), 옥수수, 들깨유(油) 유동성(流動性) 관(關)해서-)

  • Kim, Eun-Ae;Shin, Kab-Choul;Kim, Haeng-Ja;Park, Jae-Ok
    • Journal of Nutrition and Health
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 1977
  • Flow properties of heated edible oils, such as soybean, rapeseed, rice bran, corn and perilla oils, were measured with Maron-Belner type capillary viscometer. These oils were heated at $180{\pm}5^{\circ}C$ (general cooking temperature) for $5{\sim}20$ hours except soybean oils ($5{\sim}40$ hours). Fluidities of these heated oils except rice bran oil were decreased according to heating time and decreasing ratio of fluidity was outstanding after 15 hour heating in corn oil and 20 hours heating in soybean and perilla oils. All the oils examined in this experiments except rice bran oil showed non-Newtonian motion after 15 hour hinting at high shear stress and Newtonian motion at less than 10 hour heating. In the soybean oil non-Newtonian flow property was outstanding after 30 hour heating at $180{\pm}5^{\circ}C$. Rice bran oil exhibit characteristic flow property, that is, non heated rice bran oil has lowest fluidity but heated one has highest fluidity compared to other oils examined in this experiment. Change of fluidity with extension of heating time was not detected and non heated rice bran oil showed non-Newtonian motion.

  • PDF

High-temperature Oxidation of CrZrN Films in Air (CrZrN 박막의 대기 중 고온산화)

  • Kim, Min-Jeong;Hwang, Yeon-Sang;Bong, Seong-Jun;Lee, Sang-Yul;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.167-168
    • /
    • 2012
  • Films of CrN, $Cr_{40}Zr_9N$, and $Cr_{31}Zr_{16}N$ were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors at $700^{\circ}C$ and $800^{\circ}C$ for up to 60h in air were investigated. All the deposited films were composed of the CrN phase. Zirconium atoms in $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films partially dissolved in the CrN phase. They advantageously refined the columnar structure, reduced the surface roughness, and increased the microhardness. The CrN film displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on its surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one. They oxidized primarily by the inward transport of oxygen. The addition of Zr could not increase the oxidation resistance of the CrN film, because the formed $ZrO_2$ that was intermixed in the $Cr_2O_3$-rich oxide layer was oxygen permeable, and developed the compressive stress in the oxide scale owing to the volume expansion during its formation.

  • PDF

Assessment of Static Crack Resistance Behavior on Particulate Reinforced Composite for Solid Propellant (고체 추진용 입자강화 복합재의 정적 균열 저항 거동 평가)

  • Seo, Bohwi;Choi, Hoonseok;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • Particulate reinforced composite is composed of hard particles and polymer matrix. This material has been widely applied for engineering industry such as automobile, construction and aerospace. For the safe application, it is important to assess crack resistance behavior. Especially in aerospace industry, crack could cause significant problem when the material is used for solid rocket fuel. Therefore, it is inevitable to estimate the characteristics of the crack propagation. In this study, crack propagation tests were conducted using particulate reinforced composite under crosshead rate 2.54 mm/min in the range of temperature $-60^{\circ}C$ to $60^{\circ}C$. The strain contour of surface for specimen was generated using digital image correlation method.