• 제목/요약/키워드: Temperature stress

검색결과 5,098건 처리시간 0.034초

보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가 (Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header)

  • 신규인;윤기봉
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.

목재 초음파 전달속도에 대한 온도의 영향 (Temperature Effect on Ultrasonic Stress Wave Velocity of Wood)

  • 강호양
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권1호
    • /
    • pp.50-55
    • /
    • 1999
  • Since ultrasonic stress wave velocity varies with wood temperature and moisture content, ultrasonic stress wave could be a tool to predict wood moisture content if temperature effect could be eliminated. This temperature effect was investigated by measuring the velocities of ultrasonic stress waves transmitting through air, a metal bar and a dimension lumber at various temperatures. For air the velocity and amplitude of the ultrasonic stress wave increase with temperature, while for a metal bar and a dimension lumber those decrease as temperature increases. However all three materials showed velocity hystereses with a temperature cycle. The effect of temperature and moisture content on stress wave velocity of a dimension lumber was depicted in the form of a three dimensional graph. The plot of stress wave velocity vs. wood moisture content was well fitted by two regression equations: a exponential equation below 46% and a linear equation above 46%.

  • PDF

Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구 (A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy)

  • 오창섭;한창석
    • 열처리공학회지
    • /
    • 제24권6호
    • /
    • pp.311-317
    • /
    • 2011
  • The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

와이어 방전 가공 시 발생되는 열응력 분포에 관한 유한요소법적 고찰 (A study on the Thermal Stress Distribution for Wire Electrical Discharge by Finite Element Method)

  • 반재삼;김승욱;김선진;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2002
  • The Purpose of this study is to know temperature and thermal stress distribution in specimens during processing of WEDM. If it is constant to the cutting speed and the thickness of material, it is very important to the effect of temperature and the thermal stress distribution after cutting processing. This paper show the analysis result of the distribution of temperature and the residual stress along the direction of thickness before processing of WEDM and after when the cooling temperature is$20^{\circ}C$. The maximum temperature of edge of specimens is $1600^{\circ}C$. It has little temperature gradient in the depth which is 5mm away from edge of specimens. Equivalent residual stress is result in 180.7 MPa at maximum temperature.

  • PDF

고온상태에서 Al 7075 합금의 크리이프 파단수명 예측에 대한 연구 (A study on the Creep fracture life prediction of Al7075 alloy under high temperature)

  • 강대민;구양;백남주
    • 한국안전학회지
    • /
    • 제3권2호
    • /
    • pp.35-48
    • /
    • 1988
  • Modern technological progress demands the use of materials at high temperature and high pressure. One of the most critical factors in considering such applications - perhaps the most critical one - is creep behavior. In this study the stress exponents n were determined during creep over the temperature range of $90^{\circ}C\;to\;500^{\circ}C$ (0.4 - 0.85 Tm) and stress range of 0.64 kgt/$mm^2$ in order to investigate the creep hehavior. The stress dependence of rapture time (n') were determined over the temperature range of $200^{\circ}C\;to\;240^{\circ}C$ and stress range of 8.13 kgt/$mm^2$ to 9.55 kgt/$mm^2$ in order to investigate to creep rupture property. And the stress transient dip tests were also carried out for the internal stress ${\sigma}i$ over the temperature range of $90^{\circ}C\;to\;500^{\circ}C$ and stress range of 0.64kgt/$mm^2$ to 17.2 kgt/$mm^2$. The creep tests for constant temperature and stress transient dip tests were conducted in air with Al 7075 alloy under constant tensile load. At around the temperature range $200^[\circ}C\;-\;230^{\circ}C$ and the stress level 8.13 - 9.55 (kgt/$mm^2$), the temperature range $280^{\circ}C\;-\;310^{\circ}C$ and the stress level 1.85 - 2.55 (kgt/$mm^2$), the temperature range $380^{\circ}C\;-\;410^{\circ}C$ and the stress 1.53 - 0.91 (kgt/$mm^2$), the stress exponent in had the value of 6.2 - 6.65 but at around the temperature range $90^{\circ}C\;-\;120^{\circ}C$ and the stress level 10 - 17.2(kgt/$mm^2$), the value of 1.3, and at around the temperature range $470^{\circ}C\;-\;500^{\circ}C$, the stress level 0.62 - 1.02 (kgt/$mm^2$) the value of 1-1. Besides these results, at around the temperature $200^{\circ}C\;-\;240^{\circ}C$ the stress dependence of rupture time (n') had the value of 6.3. Finally, it was found that the value n calculated by considering the applied stress dependence of the internal stress were in good agreement with those obtained for the creep test. Then, it was concluded that the change in n was mainly attributed to the difference of the applied stress dependence of the internal stress and the ratio of the internal stress to the applied stress, and the creep rupture life may be represented as.

  • PDF

Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress - A review

  • Liu, Jiangjing;Li, Lanqi;Chen, Xiaoli;Lu, Yongqiang;Wang, Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1332-1339
    • /
    • 2019
  • Heat stress exerts a substantial effect on dairy production. The temperature and humidity index (THI) is widely used to assess heat stress in dairy operations. Herein, we review the effects of high temperature and humidity on body temperature, feed intake, milk production, follicle development, estrous behavior, and pregnancy in dairy cows. Analyses of the effects of THI on dairy production have shown that body temperature is an important physiological parameter in the evaluation of the health state of dairy cows. Although THI is an important environmental index and can help to infer the degree of heat stress, it does not reflect the physiological changes experienced by dairy cows undergoing heat stress. However, the simultaneous measurement of THI and physiological indexes (e.g., body temperature) would be very useful for improving dairy production. The successful development of automatic detection techniques makes it possible to combine THI with other physiological indexes (i.e., body temperature and activity), which could help us to comprehensively evaluate heat stress in dairy cows and provide important technical support to effectively prevent heat stress.

Effects of gamma aminobutyric acid on performance, blood cell of broiler subjected to multi-stress environments

  • Keun-tae, Park;Mihyang, Oh;Younghye, Joo;Jong-Kwon, Han
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.248-255
    • /
    • 2023
  • Objective: Stress factors such as high temperatures, overcrowding, and diurnal temperature range exert profound negative effects on weight gain and productivity of broiler chickens. The potential of gamma aminobutyric acid (GABA) as an excitatory neurotransmitter was evaluated under various stress conditions in this study. Methods: The experiment was conducted under four different environmental conditions: normal, high temperature, overcrowded, and in an overcrowded-diurnal temperature range. The experimental groups were divided into (-) control group without stress, (+) control group with stress, and G50 group (GABA 50 mg/kg) with stress. Weight gain, feed intake, and feed conversion ratio were measured, and stress reduction was evaluated through hematologic analysis. Results: The effects of GABA on broilers in four experimental treatments were evaluated. GABA treated responded to environmental stress and improved productivity in all the experimental treatments. The magnitude of stress observed was highest at high temperature, followed by the overcrowded environment, and was least for the overcrowded-diurnal temperature range. Conclusion: Various stress factors in livestock rearing environment can reduce productivity and increase disease incidence and mortality rate. To address these challenges, GABA, an inhibitory neurotransmitter, was shown to reduce stress caused due to various environmental conditions and improve productivity.

극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구 (A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature)

  • 이준현
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.

열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구 (Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates)

  • 박으뜸;이병언;강동식;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.