• Title/Summary/Keyword: Temperature sense

Search Result 221, Processing Time 0.031 seconds

A 12-bit Hybrid Digital Pulse Width Modulator

  • Lu, Jing;Lee, Ho Joon;Kim, Yong-Bin;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, a 12-bit high resolution, power and area efficiency hybrid digital pulse width modulator (DPWM) with process and temperature (PT) calibration has been proposed for digital controlled DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential tapped delay line ring-mux digital-to-time converter (DTC) schema and a 6-bit counter-comparator DTC schema, resulting in a power and area saving solution. Furthermore, since the 6-bit differential delay line ring oscillator serves as the clock to the high 6-bit counter-comparator DTC, a high frequency clock is eliminated, and the power is significantly saved. In order to have a simple delay cell and flexible delay time controllability, a voltage controlled inverter is adopted to build the deferential delay cell, which allows fine-tuning of the delay time. The PT calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs and a lookup table. The monitor circuits sense the PT (Process and Temperature) variations, and the flash ADC converts the data into a digital code. The complete circuits design has been verified under different corners of CMOS 0.18um process technology node.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

The Effects of Parka on Subject Wear Sensation as to Thermal Resistance (파카의 보온성에 따른 착용감에 관한 연구)

  • Lee Yoon-Jung;Lee Soon-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.295-303
    • /
    • 1989
  • This study is to measure the thermal resistance of 7 types of Parka of different materials with thermal manikin and to compare their effects on physiological responses & subjective wear sensations. Following are the results obtained from the experiments 1) From the thermal manikin experiment, i) As an outer layer, although not significant, water proof fabric was warmer than water proof-vapor permeable fabric. ii) In case of insulating material, down was better for thermal resistance than polyester wadding of the same thickness. Moreover, as the down was thicker, it had more efficiency in thermal resistance. However, the marginal efficiency of thickness was found to be decreasing. 2) From the male-subject experiments, i) Chest temperature, mean skin temperature & microclimate temperature showed the same results on thermal resistance as those of the thermal manikin experiment. ii) Only during rest periods, there was a significant difference among 5 insulating materials in the sense of microclimate humidity. The almost same conclusion was obtained from the above experiments. Even the outer layer did not significantly affect thermal resistance & subjective wear sensation, insulating materials had a significant influence upon them. But in case of 3.5 cm down, it gave less comfortable than that of the thinner. Therefore the optional one for the best comfort & thermal resistance among 7 combinatins is the outer layer of water proff-vapor permeable & insulating material of 2.1 cm down.

  • PDF

Analysis on the Fuel Cell Performance by the Impedance Method (임피던스법을 적용한 연료전지의 성능평가)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.918-923
    • /
    • 2007
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. Corrosions in molten electrolytes and the electric conductivity across the oxide scale have crucial characteristics. When molten salts are involved, high temperature corrosions become severe. In this sense, corrosions of alloys with molten carbonates have the most severe material problems. Systematic investigation on corrosion behavior of Fe/21Cr/Ti or Al alloy has been done in (62+38)mol% (Li+K)$CO_3$ melt at $650^{\circ}C$ using the electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Al or Ti. And Al addition improved the corrosion resistance of this type of specimen and more improvement of corrosion resistance was observed at the specimen added with Al.

Design and Fabrication of Silicon Flow Sensor For Detecting Air Flow (유속 감지를 위한 실리콘 유량센서의 설계 및 제작)

  • 이영주;전국진;부종욱;김성태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.113-120
    • /
    • 1994
  • Silicon flow sensor that can detect the velocity and direction of air flow was designed and fabricated by integrated circuit process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm, a heater at the center of the diaphragm, and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity of the sensor due to excellent thermal isolation property of dielectric materials and their tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the proposed structure. The sensor is fabricated using CMOS compatible process followed by the anisotropic etching of silicon in KOH and EDP solutions to form I$\mu$ m thick dielectric diaphragm as the last step. TCR(Temperature Coefficient of Resistance) of the heater of the fabricated sensors was measured to calculate the operating temperature of the heater and the output voltage of the sensor with respect to flow velocity was also measured. The TCR of the polysilicon heater resistor is 697ppm/K, and the operating temperature of the heater is 331$^{\circ}C$ when the applied voltage is 5V. Measured sensitivity of the sensor is 18.7mV/(m/s)$^{1/2}$ for the flow velocity of smaller than 10m/s.

  • PDF

The Physiological Responses of Material-improved Working Clothes for Construction Site Worker (건설현장 작업복의 소재 기능성 향상에 따른 생리반응)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.13 no.5
    • /
    • pp.752-758
    • /
    • 2011
  • In this paper, experiments to develop working clothes and evaluated, including the current and material-improved working clothes in relation to physiological functionality measurement. Experiments were conducted on subjects after wearing working clothes in an climate chamber, and the thermo-physiological response, such as human body temperature, micro-climate within the clothes, blood pressure, heart rate were measured. In this manner, the physiological functionality of improved working clothes was compared with that of current working clothes and evaluated. The summary of obtained results is as follows: For physiological functionality evaluation through material-improved working clothes, P working clothes showed significantly lower rectal temperature than C working clothes. For mean skin temperature, P's skin temperature was significantly higher than C's in the second half of the experiment. P working clothes's temperature around the thighs in Micro climate was significantly lower than that of the C working clothes. Also, humidity within the clothes showed similar trends. During the exercise period, C working clothes showed higher blood pressure than P, but P showed higher heart rates than C. Also, the oxygen uptake amount was higher in C than P during the exercise period, it explains that the energy consumption amount of P working clothes was smaller than that of C working clothes. Of the subjective evaluation, for temperature sensation, workers wearing P working clothes felt cooler. For humidity, C working clothes showed more humidity. For comfort, P working clothes were better, and for sense of fatigue, workers felt less tired wearing P working clothes. From results above, we can see that physiological functionality improved in the material-improved working clothes in the working clothes for construction site workers. The improvement of working clothes through functionality improvements not only will provide personal pleasantness to constriction site workers, but will also generate efficiency and productivity improvements at construction sites. All in all, the continuous study of functionality improvements in working clothes taking into consideration the human body's physiological responses is required.

Passenger's Electrocardiogram Change due to Color Temperature in Case of Elevator Jam (승강기 갇힘 사고 시 색 온도에 의한 이용자의 심전도 변화)

  • Kim, Ho-Gyeom;Kim, Kyu-Beom;Jo, Hyung-Seok;Ahn, Seok-Huen;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.11-18
    • /
    • 2020
  • This study aims to suggest the most stable color temperature that can relieve the anxiety of passengers in case of an elevator trapped accident. The experiment was conducted on 10 adult men in their 20s. The color temperature of the interior lighting of the elevator was adjusted to four stages (3,000 K; 6,000 K; 9,000 K; and 12,000 K). Electrocardiogram (ECG) was measured and analyzed to observe the reaction of the user's autonomic nervous system decline in 3,000 K; 6,000 K; 9,000 K compared with 12,000 K, where a statistically significant difference was recognized (p < 0.01). Among them, the activity of the sympathetic nervous system was the lowest under the condition of 3,000 K. Through this study, it was found that the color temperature of 3,000 K induced a sense of stability among passengers in the event of an elevator jam. If the results of this study are used, it seems that the stability of passengers will be secured in the event of an elevator jam.

The Wearing Sense of Male Adult Shoes - Comparison of Common Shoes with Elevated Shoes -

  • Shim, Boo-Ja;Yoo, Hyun
    • Journal of Fashion Business
    • /
    • v.11 no.6
    • /
    • pp.35-51
    • /
    • 2007
  • This research was administered in order to know the effects of heels on the foot by comparing the foot environmental characteristics when common shoes and elevated shoes are worn. First, 157 male adults in their 20s through 40s living in Busan were the inquiry subjects to reveal the shoes-wearing reality of adult males. Second, 7 male adults in their early 20s became the subjects for the experiments of wearing common shoes and elevated shoes. 1. Inquiry Results of Shoes-Wearing Reality Common-shoes wearers were in the order: 20s (43.9%) > 30s (24.8%) > 40s (8.3%). Elevated-shoes wearers were mostly 20s (12.1%), followed by 30s (8.3%) and 40s (2.5%). Among the wearing effects of elevated shoes were 'looking taller' (66.7%), 'no height complex & more confidence' (30.6%), and 'higher work efficiency' (2.8%). In sum, 97.3% of the male subjects believed in great positive effects by wearing elevated shoes. 2. Shoes-Wearing Experiment Results In foot skin temperature, significant differences between the two groups were admitted in outer foot a (p<0.05) and other areas (p<0.001), except in the instep. Elevated-shoes group had bigger skin temperature, while the order of temperature was the instep, the big toe, inner foot a/b/c and outer foot a/b/c. Significant difference was accepted in total sweat rate (p<0.05) and local sweat rate (p<0.01). Elevated-shoes group appeared higher in both rates. Significant difference (p<0.001) between the two groups was recognized in fatigue degrees after wearing, whereas significance (p<0.05) in elevated-shoes group was approved in fatigue before and after exercise. So elevated-shoes group experienced more fatigue, especially after exercise.

Synthesis and Cholesteric Mesophase Properties of (Hydroxypropyl)celluloses, Their Ester and Ether Derivatives ((Hydroxypropyl)celluloses와 에스테르 및 에테르 유도체들의 합성과 Cholesteric 상의 특성)

  • ;;;Yoshinobu Tsujii
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.279-292
    • /
    • 2001
  • Two kinds of (hydroxypropyl)cellulose(HPCs) with different molar substitution (MS) and three types of derivatives based on the HPCs: (acetoxypropyl)celluloses, (ethoxypropyl)celluloses, and (cyanoethoxyprofyl)celluloses were synthesized, and their thermal and mesomorphic properties were investigated. All samples, which exhibit cholesteric reflection colours at room temperature, formed right-handed helicoidal structures whose optical pitches (λ$_{ms}$ ) increase with temperature. However, the isotropization ($T_{i}$) and glass temperatures, the magnitude of λ$_{m}$ of the mesophase at the same temperature, and the temperature dependence of λ$_{m}$ of the investigated derivatives highly depended on MS and the length and structure of the side chain introduced in HPC. The results were discussed in terms of the difference in the polarity and flexibility of the substituents and the distance between the main chains. For all derivatives, Am values approached infinity at temperatures above the $T_{i}$, of the mesophase, and no reversal in the sense of the pitch with temperature was detected.

  • PDF

Thermo-Sensitive Polyurethane Membrane with Controllable Water Vapor Permeation for Food Packaging

  • Zhou, Hu;Shit, Huanhuan;Fan, Haojun;Zhou, Jian;Yuan, Jixin
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.528-532
    • /
    • 2009
  • The size and shape of free volume (FV) holes available in membrane materials control the rate of gas diffusion and its permeability. Based on this principle, a segmented, thermo-sensitive polyurethane (TSPU) membrane with functional gate, i.e., the ability to sense and respond to external thermo-stimuli, was synthesized. This smart membrane exhibited close-open characteristics to the size of the FV hole and water vapor permeation and thus can be used as smart food packaging materials. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), positron annihilation lifetimes (PAL) and water vapor permeability (WVP) were used to evaluate how the morphological structure of TSPU and the temperature influence the FV holes size. In DSC and DMA studies, TSPU with a crystalline transition reversible phase showed an obvious phase-separated structure and a phase transition temperature at $53^{\circ}C$ (defined as the switch temperature and used as a functional gate). Moreover, the switch temperature ($T_s$) and the thermal-sensitivity of TSPU remained available after two or three thermal cyclic processes. The PAL study indicated that the FV hole size of TSPU is closely related to the $T_s$. When the temperature varied cyclically from $T_s-10{\circ}C$ to $T_s+10^{\circ}C$, the average radius (R) of the FV holes of the TSPU membrane also shifted cyclically from 0.23 to 0.467 nm, exhibiting an "open-close" feature. As a result, the WVP of the TSPU membrane also shifted cyclically from 4.30 to $8.58\;kg/m^2{\cdot}d$, which produced an "increase-decrease" response to the thermo-stimuli. This phase transition accompanying significant changes in the FV hole size and WVP can be used to develop "smart materials" with functional gates and controllable water vapor permeation, which support the possible applications of TSPU for food packaging.