Thermo-Sensitive Polyurethane Membrane with Controllable Water Vapor Permeation for Food Packaging

  • Zhou, Hu (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Shit, Huanhuan (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Fan, Haojun (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Zhou, Jian (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Yuan, Jixin (College of Chemistry and Materials Science, Wenzhou University)
  • Published : 2009.07.25

Abstract

The size and shape of free volume (FV) holes available in membrane materials control the rate of gas diffusion and its permeability. Based on this principle, a segmented, thermo-sensitive polyurethane (TSPU) membrane with functional gate, i.e., the ability to sense and respond to external thermo-stimuli, was synthesized. This smart membrane exhibited close-open characteristics to the size of the FV hole and water vapor permeation and thus can be used as smart food packaging materials. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), positron annihilation lifetimes (PAL) and water vapor permeability (WVP) were used to evaluate how the morphological structure of TSPU and the temperature influence the FV holes size. In DSC and DMA studies, TSPU with a crystalline transition reversible phase showed an obvious phase-separated structure and a phase transition temperature at $53^{\circ}C$ (defined as the switch temperature and used as a functional gate). Moreover, the switch temperature ($T_s$) and the thermal-sensitivity of TSPU remained available after two or three thermal cyclic processes. The PAL study indicated that the FV hole size of TSPU is closely related to the $T_s$. When the temperature varied cyclically from $T_s-10{\circ}C$ to $T_s+10^{\circ}C$, the average radius (R) of the FV holes of the TSPU membrane also shifted cyclically from 0.23 to 0.467 nm, exhibiting an "open-close" feature. As a result, the WVP of the TSPU membrane also shifted cyclically from 4.30 to $8.58\;kg/m^2{\cdot}d$, which produced an "increase-decrease" response to the thermo-stimuli. This phase transition accompanying significant changes in the FV hole size and WVP can be used to develop "smart materials" with functional gates and controllable water vapor permeation, which support the possible applications of TSPU for food packaging.

Keywords

References

  1. L. E. Gerlowski, Barrier Polymers and Structures, 423, 177 (1990) https://doi.org/10.1021/bk-1990-0423.ch008
  2. Y. C. Jean, J. P. Yuan, J. Liu, and H. J. Yang, J. Polym. Sci. Part B: Polym. Phys., 33, 2365 (1995) https://doi.org/10.1002/polb.1995.090331708
  3. Y. Chen, Y. Liu, and H. J. Fan, et al., J. Membrane Sci., 287, 192 (2007) https://doi.org/10.1016/j.memsci.2006.10.028
  4. H. T. Lee and D. S. Lee, Macromol. Res., 10, 359 (2002) https://doi.org/10.1007/BF03218330
  5. S. G. Kim and D. S. Lee, Macromol. Res., 10, 365 (2002) https://doi.org/10.1007/BF03218331
  6. S. Y. Park and Y. H. Cho, Macromol. Res., 13, 156 (2005) https://doi.org/10.1007/BF03219031
  7. H. M. Jeong, J. B. Lee, S. Y. Lee, and B. K. Kim, J. Mater. Sci., 35, 279 (2000) https://doi.org/10.1023/A:1004728814128
  8. X. M. Ding, J. L. Hu, and X. M. Tao, Text. Res. J., 74, 39 (2004) https://doi.org/10.1177/004051750407400107
  9. S. Hayashi, N. Ishikawa, and C. Giordano, J. Coated Fabrics, 23, 74 (1993) https://doi.org/10.1177/152808379302300110
  10. H. J. Fan, L. Li, X. N. Fan, and B. Shi, J. Soc. Leath. Tech. Ch., 89, 121 (2005)
  11. D. J. David and H. B. Staley, Analytical Chemist of Polyurethanes, Wiley/Interscience, New York, 1969
  12. B. Wang, M. Zhang, and J. M. Zhang, Phys. Lett. A, 262, 195 (1999) https://doi.org/10.1016/S0375-9601(99)00559-9
  13. S. H. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res., 13, 212 (2005) https://doi.org/10.1007/BF03219054
  14. J. K. Yun, H. J. Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007) https://doi.org/10.1007/BF03218748
  15. H. Nakanishi, S. J. Wang, and Y. C. Jean, Positron annihilation studies of fluids, S. C. Sharma, ed., World Science, Singapore, 1988
  16. W. Y. Jeong and S. K. An, J. Mater. Sci., 36, 4797 (2001) https://doi.org/10.1023/A:1017995509102
  17. H. M. Jeong, B. K. Ahn, S. M. Cho, and B. K. Kim, J. Polym. Sci. Part B: Polym. Phys., 38, 3009 (2000) https://doi.org/10.1002/1099-0488(20001201)38:23<3009::AID-POLB30>3.0.CO;2-8
  18. B. K. Kim, S. Lee, and Y. M. Xu, Polymer, 37, 5781 (1993) https://doi.org/10.1016/S0032-3861(96)00442-9
  19. B. K. Kim, S. Y. Lee, and J. S. Lee, Polymer, 39, 2803 (1998) https://doi.org/10.1016/S0032-3861(97)00616-2