• Title/Summary/Keyword: Temperature programmed-desorption (TPD)

Search Result 79, Processing Time 0.029 seconds

The Effects of binary metal oxide catalysts for the synthesis of glycerol carbonate (이원계 금속산화물 촉매가 글리세롤카보네이트 합성에 미치는 영향)

  • Baek, Jae-Ho;Moon, Myung-Jun;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.456-461
    • /
    • 2012
  • The glycerol carbonate was synthesized by glycerol and urea using metal oxide catalysts. The physical properties of the prepared metal oxide catalysts were investigated by X-ray diffraction (XRD), specific surface area analysis (BET), field emission scanning electron microscopy (FE-SEM) and temperature programmed desorption (TPD). In addition, we confirmed the conversion of the glycerol and the yield of the glycerol carbonate according to characteristics of metal oxide catalysts. From XRD and FE-SEM analysis, the crystallite size and crystallinity of metal oxide catalysts decrease with addition of Al. In addition, the Zn-Al mixed metal oxide had higher catalytic activity than the pure ZnO due to decreased side reaction in the synthesis of glycerol carbonate.

Revisiting $H_2$ and CO Interactions with Pt(111) Surfaces

  • Kim, Je-Heon;Jo, Sam-K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.203-203
    • /
    • 2011
  • The importance of stepped single-crystal surfaces as model catalysts has been well recognized [1]. We re-investigated the adsorption properties of $H_2$ and CO, most important species in platinum-based catalysts, on nearly defect-free and highly stepped surfaces of one and the same Pt(111) crystal. While both being symmetric and single-peaked from the nearly defect-free surface, temperature-programmed desorption (TPD) spectra from the highly stepped surface saturated at 90 K with H and CO were triply- and doubly-peaked, respectively. Once pre-adsorbed, CO preempted step and then terrace sites, inhibiting the dissociative $H_2$ adsorption completely. Pre-adsorbed H inhibited the CO adsorption on terrace sites only, leaving defect sites intact for CO adsorption even at the saturation H precoverage. On defect-free Pt(111), while pre-adsorbed CO inhibited the dissociative $H_2$ adsorption completely, pre-adsorbed H could not inhibit the CO adsorption completely. These intriguing, but interesting results are discussed in terms of energetics/kinetics and the role of surface step sites in the dissociative adsorption of $H_2$ on Pt(111) [2].

  • PDF

Behavior of Hydroxide Ions at the Water-Ice Surface by Low Energy Sputtering Method

  • Kim, S.Y.;Park, E.H.;Kang, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.338-338
    • /
    • 2011
  • The behavior of hydroxide ions on water-ice films was studied by using $Cs^+$ reactive ion scattering (RIS), low energy sputtering (LES) and temperature-programmed desorption (TPD). A $Cs^+$ beam of a low kinetic energy (<100 eV) from $Cs^+$ ion gun was scattered at the film surface, and then $Cs^+$ projectiles pick up the neutral molecules on the surface as $Cs^+$-molecule clusters form (RIS process). In LES process, the preexisting ions on the surface are desorbed by the $Cs^+$ beam impact. The water-ice films made of a thick (>50 BL) $H_2$O layer and a thin $D_2O$ overlayer were controlled in temperatures 90~140K. We prepared hydroxide ions by using Na atoms which proceeded hydrolysis reaction either on the ice film surface or at the interface of the $H_2O$ and $D_2O$ layers.[1] The migration of hydroxide ions from the $H_2O/D_2O$ interface to the top of the film was examined as afunction of time. From this experiment, we show that hydroxide ions tend to reside at the water-ice surface. We also investigated the H/D exchange reactions of $H_2O$ and $D_2O$ molecules mediated by hydroxide ions to reveal the mechanism of migration of hydroxide to the ice surface.

  • PDF

$O_2$-$NH_3$처리한 활성탄의 탈황능 향상에 관한 연구

  • 고윤희;서경원
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.90-96
    • /
    • 1994
  • 본 연구는 에너지를 집중적으로 사용하는 발전소와 대규모 공장 단지에서 발생하는 배기가스 중에 포함된 황산화물의 제거 방법에 관한 것으로서, 활성탄의 적절한 전처리를 통해 이산화황 흡착능을 향상시켜 머지 않은 장래에 엄격히 적용될 대기오염 기준을 만족시킴과 동시에, 오염 물질의 제거 효율이 높고 폐기물 매립의 부담이 없는 건식 탈황 공정의 효율향상에 기여하는 것을 목적으로 하고 있다. Activated Char나 활성탄을 이용하여 황산화물과 질소산화물을 동시에 제거하기 위해서는 Carbon 표면을 적절하게 처리함으로써 활성탄의 촉매활성을 향상시키는 것이 필요하다. 따라서 본 연구에서는 활성탄을 열 및 $O_2$-NH$_3$ 혼합가스로 전처리하여 표면의 특성 변화와 SO$_2$ 흡착능에 미치는 영향을 살펴보았다. Coconut Shell로부터 제조한 활성탄을 NH$_3$의 농도를 변화시켜가며 $O_2$와의 혼합가스로 973~1173K에서 열처리하는 방법에 의해 전처리하여, 이률 고정층 반응기에서 SO$_2$흡착 및 반응실험을 수행하였고, 이 과정 중의 활성탄 표면의 특성변화를 원소분석, TPD(Temperature Programmed Desorption), FTIR(Fourier Transform Infrared Spectroscopy), Acid-Base Titration, SEM(Scanning Electrolic Microscopy)등의 분석 방법을 통해서 알아보았다. 그 결과, 활성탄을 열 및 $O_2$-NH$_3$혼합가스로 처리하여 환원성 분위기 하에서 표면 활성점을 증가시킴으로써 황산화물 흡착제거율이 향상됨을 얻었다.

  • PDF

Studies on the Developement of Active Components and their Charactrization of 3-Way Catalysts for Autombile Emission Control -Studies on the surface Characterstics Changes of Pd/$\gamma$-Alumina Catalysts by Addition of WO$_3$ and La$_2$O$_3$ as Promoters- (자동차 배기정화용 3원촉매정화기의 국산화 시도를 위한 촉매성분의 개발과 그 촉매 특성에 관한 연구 -WO$_3$ 및 La$_2$O$_3$조촉매성분들의 첨가에 따른 Pd/$\gamma$-Alumina 촉매들의 표면특성 변화-)

  • 이상윤;정석진;박경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.2
    • /
    • pp.30-38
    • /
    • 1990
  • For the purpose of suggesting the thermal resistant catalyst for automobile emission control, various catalysts, Pd-WO3 and PD-La2O3 systems, were charactrized before and after thermal aging. It was found that La2O3 formed amorphous surface compound on the support by strong metal-support interaction(SMSI). And by Temperature Programmed Desorption (TPD) expeiment, it was found that the distribution of acid site which is strong acid sites by adding the promoters. After thermal aging, it was observed that the acidity of Pd-WO3 system was decreased largely because of losing acid site by metal vaporization. On the other hand, there was pretty small change in the properties of matter of Pd-La2O3 system. Therefore, it could be considered that La2O3 formed heat resisting amorphous surface compound on the support by SMSI.

  • PDF

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction (키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응)

  • Yoon, Young-Chan;Song, Kang;Lim, Jeong-Hyeon;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.305-311
    • /
    • 2021
  • Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

Ammonia Adsorption Capacity of Zeolite X with Different Cations (Zeolite X의 양이온에 따른 암모니아 흡착 성능 연구)

  • Park, Joonwoo;Seo, Youngjoo;Ryu, Seung Hyeong;Kim, Shin Dong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.355-359
    • /
    • 2017
  • Zeolite X with Si/Al molar ratio = 1.08~1.20 was produced using a hydrothermal synthesis method. Ion-exchanged zeolite X samples were then prepared by using metal nitrate solutions containing $Mg^{2+}$ or $Cu^{2+}$. For all zeolite X samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to identify the change in crystal structure. The analysis of ammonia adsorption capability of zeolite X samples was conducted through the ammonia temperature-programmed desorption ($NH_3$-TPD) method. From XRD results, the prepared zeolite X samples maintained the Faujasite (FAU) structure regardless of cation contents in zeolite X, but the crystallinity of zeolite X containing $Mg^{2+}$ and $Cu^{2+}$ cations decreased. The distribution of cation contents in zeolite X was identified via EDS analysis. $NH_3$-TPD analysis showed that the $NH_3$ adsorption capacity of $Mg^{2+}$- and $Cu^{2+}$-zeolite X were 1.76 mmol/g and 2.35 mmol/g, respectively while the $Na^+$-zeolite X was 3.52 mmol/g ($NH_3/catalyst$). $Na^+$-zeolite X can thus be utilized as an adsorbent for the removal of ammonia in future.

Bulk and Surface Reactions of Atomic H with Crystalline Si(100)

  • 조삼근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.175-175
    • /
    • 2000
  • Si(100) surfaces were exposed to gas-phase thermal-energy hydrogen atoms, H(g). We find that thermal H(g) atoms etch, amorphize, or penetrate into the crystalline silicon substrate, depending on the employed Ts range during the H(g) exposure. We find that etching is enhanced as Ts is lowered in the 300-700K range, while amorphous silicon hydride (a-Si:H) formation dominates at a Ts below 300K. This result was well explained by the fact that formation of the etching precursor, SiHx(a), and amorphization are both facilitated by a lower Ts, whereas the final step for etching, SiH3(a) + H(g) longrightarrow SiH3(g), is suppressed at a lower Ts. we also find that direct absorption of H(g) by the crystalline bulk of Si(100) substrate occurs within a narrow Ts window of 420-530K. The bulk-absorbed hydrogen evolved out molecularly from Si(100) at a Ts 80-120K higher than that for surface monohydride phase ($\beta$1) in temperature-programmed desorption. This bulk-phase H uptake increased with increasing H(g) exposure without saturation within our experimental limits. Direct absorption of H(g) into the bulk lattice occurs only when the surface is atomically roughened by surface etching. While pre-adsorbed hydrogen atoms on the surface, H(a), were readily abstracted and replaced by D(g), the H atoms previously absorbed in the crystalline bulk were also nearly all depleted, albeit at a much lower rate, by a subsequent D(g) at the peak temperature in TPD from the substrate sequentially treated with H(g) and D(g), together with a gas phase-like H2 Raman frequency of 4160cm-1, will be presented.

  • PDF

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.