• Title/Summary/Keyword: Temperature model

Search Result 9,642, Processing Time 0.042 seconds

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

Numerical Study of Combustion Characteristics and NO Emission in Swirl Premixed Burner (스월 예혼합 버너의 연소 특성 및 NO 배출에 관한 수치적 연구)

  • Baek, Gwang Min;Cho, Cheon Hyeon;Cho, Ju Hyeong;Kim, Han Seok;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.911-918
    • /
    • 2013
  • The combustion characteristics of an EV (Environmental Vortex) burner (double-cone burner) adopted in a gas turbines are numerically investigated. The mixing of fuel and air is analyzed for reduction of NO emission. To predict the correlation between NO emission and fuel-air mixedness, 1-step and 2-step chemistry models are adopted. The results calculated by 1-step chemistry showed that NO emissions increased by 2% in the case of degraded mixedness and by 169% in the case of improved mixedness, where the temperature in the flame zone was overestimated upstream of the cone. However, the corresponding results calculated by 2-step chemistry showed that NO emission increased by 3% and decreased by 5%, where the flame zone was not formed inside the cone. The latter results agree well with the experimental ones indicating an increase of 63% and decrease of 11% in the respective cases. Despite quantitative errors, NO emissions can be predicted reasonably by the application of the 2-step chemistry model adopted here and design modification of burner for NO reduction can be proposed based on the numerical data.

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Yield and Nutritional Quality of Several Non-heading Chinese Cabbage (Brassica rapa var. chinensis) Cultivars with Different Growing Period and Its Modelling

  • Kalisz, Andrzej;Kostrzewa, Joanna;Sekara, Agnieszka;Grabowska, Aneta;Cebula, Stanislaw
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.650-656
    • /
    • 2012
  • The aims of the experiment, conducted over three years in the Central Europe field conditions, were (1) to investigate the effect of growing period (plantings in the middle and at the end of August: $1^{st}$ and $2^{nd}$ term, respectively) on yield and chemical composition of the non-heading Chinese cabbage (Brassica rapa var. chinensis) cultivars 'Taisai', 'Pak Choy White', and 'Green Fortune', and (2) to develop regression models to evaluate the changes in crop yields as a function of weather conditions. A highest marketable yield was obtained from 'Taisai' (65.71 and 77.20 $t{\cdot}ha^{-1}$), especially in the $2^{nd}$ term of production. Low yield, observed for 'Pak Choy White' was due to its premature bolting. Almost 39% ($1^{st}$ term) and 70% ($2^{nd}$ term) of plants of this cultivar formed inflorescence shoots before harvest. The highest dry matter level was observed in the leaf petioles of 'Taisai', while 'Green Fortune' was the most abundant of carotenoids and L-ascorbic acid. The content of soluble sugars was the lowest for 'Pak Choy White'. In a phase of harvest maturity, more of the analyzed constituents were gathered by plants from earlier plantings, and differences were as follows: 4.7% (dry matter), 26.3% (carotenoids) and 22.1% (L-ascorbic acid), in comparison to $2^{nd}$ term of production. Significant increase of soluble sugars level was observed for plants from later harvest. The regression model for marketable yield of Chinese cabbage cultivar 'Taisai' as a function of maximum air temperature can predict the yield with accuracy 68%. The models for yield or bolting of 'Pak Choy White', based on extreme air temperatures and sunshine duration, were more precise (98%). It should be pointed out that Taisai could be recommended for later growing period in Central Europe conditions with regard to maximum yield potential. 'Green Fortune' was notable for its uniform yielding. To obtained plants of higher nutritional value, earlier time of cultivation should be suggested. Described models can be successfully applied for an approximate simulation of Chinese cabbage yielding.

Effect of Diluted H2SO4 and NaOH Treatment on Chemical Composition of Larch and Yellow Poplar (황산 및 수산화나트륨처리가 낙엽송과 백합나무의 주요 화학조성에 미치는 영향)

  • Lee, Soo-Min;Lee, A-Ram;Ahn, Byoung Jun;Kim, Yong Sik;Yang, In;Cho, Sung Taig
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.358-373
    • /
    • 2013
  • In this study, both mild acid and alkali treatments with 1.0 wt% and 2.0 wt% of $H_2SO_4$ and NaOH solution were applied to evaluate the effects on chemical compositions of wood biomass. Yellow poplar (Liriodendron tulipifera L.) and larch (Larix kaempferi C.) were chosen due to major species planted in Korea. Chemical treatments of biomass were carried out by being soaked in either acid or alkali solution with 1:20 ratio for 72 hours at ambient temperature. Afterward, lignin, 5 major reduced sugars, ash contents and elemental composition were determined. To statistically understand the relationship between samples and chemical treatments, the Tukey test, simple linear regression model and ANOVA analysis were introduced using a statistical software R. As results from both wet chemistry and statistical analysis, yellow poplar was more affected on the lignin and xylose contents by acid treatments under these experimental conditions. Meanwhile, larch was more affected on the composition of galactose and lignin by alkali treatments. A series of results in this study would show that equivalent chemical treatment makes a change the chemical composition of each species.

Correlation Analysis and Growth Prediction between Climatic Elements and Radial Growth for Pinus koraiensis (잣나무 연륜생장과 기후요소와의 상관관계 분석 및 생장예측)

  • Chung, Junmo;Kim, Hyunseop;Lee, Sangtae;Lee, Kyungjae;Kim, Meesook;Chun, Yongwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • This study was conducted to analyze the relationship among climatic factors and radial growth of Pinus koraiensis in South Korea. To determine climate-growth relationships, cluster analysis was applied to group climatically similar surveyed regions, and dendroclimatological model was developed to predict radial growth for each climate group under the RCP 4.5 and RCP 8.5 scenarios for greenhouse gases. The dendroclimatological models were developed through climatic variables and standardized residual chronology for each climatic cluster of P. koraiensis. 2 to 4 climatic variables were used in the models ($R^2$ values between 0.35~0.49). For each of the climatic clusters for Pinus koraiensis, the growth simulations obtained from two RCP climate-change scenarios were used for growth prediction. The radial growth of the Clusters 2 and 3, which grow at high elevation, tend to increase. In contrast, Cluster 1, which grows at low elevation, tends to decrease with a large difference. Thus, the growth of Pinus koraiensis, which is a boreal species, could increase along with increasing temperature up to a certain point.

Removal of Cyanogenic Compounds in Apricot Kernel during Heating Process (가열조리방법을 통한 행인 내 시안화합물의 저감화)

  • Do, Byung-Kyung;Kwon, Hoon-Jeong;Lee, Dong-Ha;Nah, Ahn-Hee;Choi, Youn-Ju;Lee, Sook-Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.395-400
    • /
    • 2007
  • Apricot Kernel, consumed as herbal medicine, contains amygdalin which generate HCN upon hydrolysis. Dyspnea was reported by ingesting large amount of apricot kernel, and neurological disorders such as tropic ataxic neuropathy or konzo were known as chronic toxicity of amygdalin. Other cyanogen containing plants, including flaxseed and almond, are consumed as food around the world. Moreover, some of them are promoted as functional food, leading to higher consumption, and posing health risk by cyanogenic components. The objective of this study was to find a method for the reduction of the cyanogenic compound, using apricot kernel as a model food. The most effective reduction was obtained by boiling the slices of the kernel for one hour in pH 1 HCl solution, showing 90% removal. However, the common process known to reduce the cyanogen contents, i.e., long incubation at the low temperature, did not show significant change in cyan concentration. Our data contribute to the safety of the plants containing cyanogenic compounds if they were to be developed as foodstuff.

Reduction of Allergenicity of Wheat Flour by Enzyme Hydrolysis (효소 분해에 의한 밀가루의 항원성 저감화)

  • Park, Ju-Yeon;Ahn, Jeung-Yeub;Hong, Hee-Ok;Hahn, Young-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.152-157
    • /
    • 2004
  • Gluten was extracted from domestic wheat flour using UTH buffer (4 M urea in 0.1 M Tris-HCl, pH 8.6) and validated by SDS-PAGE analysis for production of wheat flour products with reduced gluten content.. Anti-gluten polyclonal antibody was made by administering extracted gluten fraction on animal model. Anti-gluten serum titer of extracted gluten fraction was evaluated by ELISA, and that of antibody titer according to administration period. Anti-gluten sera were used for ELISA and immunoblot analysis before and after hydrolysis of gluten fraction at optimal pH and temperature condition for each protease. Gluten fraction separated by SDS-PAGE showed several bands covering 75 to 10 kDa, in which anti-gluten sera were 25, 34, and 45 kDa. Enzyme hydrolysis of gluten fraction revealed protein band sizes to be lower than 15 kDa. Content of pretense from bovine pancreas (b.p. protease) for gluten hydrolysis was estimated as 1 mg in 10 mL gluten fraction extracted for 4 hr.

Preparation of Metal Hydrides Using Chemical Synthesis and Hydriding Kinetics (화학적 합성법에 의한 금속수소화물의 제조 및 수소화 속도론적 연구)

  • Lee, Yun Sung;Oh, Jae Wan;Moon, Sung Sik;Nahm, Kee Suk
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.255-260
    • /
    • 1998
  • Metal hydrides, $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$, were prepared using chemical synthetic method, and their physical properties were examined using various analytic techniques such as TGA, XRD, SEM and EDX. The activation of the chemically prepared $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$ was achieved by two hydriding/dehydriding cycles only. The miasurements of P-C-T curves revealed that 6 and 5.5 hydrogen atoms were stored in LaNi5and $LaNi_{4.5}Al_{0.5}$, respectively. The hydriding reaction rated for $LaNi_{4.5}Al_{0.5}$ were measured by the method of initial rates. It was found that the shrinking unreacted core model could be applied for the analysis of hydriding kinetics of $LaNi_5$. The rate controlling step of this reaction was the dissociative chemisorption of hydrogen molecules on the surface of $LaNi_5$. The activation energy was $9.506kcal/mol-H_2$. The rates measured in the temperature range from 273 to 343K and in pressure difference ($P_o-P_{eq}$) range form 0.25 to 0.66atm could be expressed as the following equation ; $\frac{dX}{dt}=4.636(P_o-P_{eq})$ exp($\frac{-9506}{RT}$).

  • PDF

A Study of Dexibuprofen Loaded Solid Dispersion Using Rotary Hot-melt Granulation (회전식 고온용융과립법을 이용한 덱시부프로펜 함유 고체분산체 연구)

  • Kim, Dong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.595-600
    • /
    • 2020
  • The purpose of this paper was to prepare and evaluate solid dispersions (SD) that can increase the dissolution rate of dexibuprofen as a model drug with low solubility in water using saccharides and sugar alcohols as dispersion materials. DSC, XRD, content and content uniformity test, dissolution test, and disintegration test were conducted for physicochemical evaluation of the prepared SD. For the results, it was confirmed using differential scanning calorimetry that fructose, which has a melting point around 120 ℃ of the device operating temperature range, is a suitable excipient for the preparation of SD by the rotary hot-melt granulation (RHMG) method. X-ray diffraction analysis was conducted to confirm that the crystallinity of dexibuprofen was reduced. Disintegration test of the prepared tablet using SD-containing dexibuprofen and fructose confirmed a very fast disintegration time within 1~2 seconds and also showed that the dissolution rate was about 20% faster than that of the dexibuprofen raw material. Dexibuprofen with reduced crystallinity by SD confirmed through the RHMG method can be used to increase the dissolution rate of the drug and increase the disintegration time of the tablet. Thus, it can be used in the manufacturing of various solid preparations.