• 제목/요약/키워드: Temperature low dependent

검색결과 551건 처리시간 0.025초

선팽창 온도특성에 의한 저밀도 폴리에틸렌의 유리 천이온도에 대한 고찰 (Investigation on glass transition temperature of low density polyethylene by the characteristics of temperature dependent linear expansion)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • 제30권7호
    • /
    • pp.441-447
    • /
    • 1981
  • As a preceeding work for the study on dielectric characterstics of a kind of low density polyethylene introduced morphological change by mechanical method, glass transition temperature which is regarded as a macroscopic aspect for relaxation of molecular chain segments has been observed by means of temperature dependent dilatometric measurement. The origina specimen clearly shows two knees which correspond to two peaks (.gamma. and .betha. peak) in the intenal friction measurement, suggesting the existence of separated glass transition temperatures at 150.deg.k and 260.deg.k respectively. On the specimen irradiated to 100 Mrad both glass transition temperatures tend to shift towards high temperature sides because of crosslinking by irradiation. furthemore an evidence can be seen that radiation effect, even in amorphous phase, is also slelctive depending on slight morphological differences. The specimen extended to four times in length shows a peculiar nature such as negative linear thermal expansion coefficient increasing with temperature between 220.deg.k and ambient temperature and that this fact is interpreted by considering that c axis of the lattice aligns along the extended direction by drawing, further c axis inherently possesses the characteristics of negative linear thermal expansion coefficient. For the observations that the relatively small positive linear expansion on the specimen extended to ca. two times as well as the part below 220.deg.k of the specimen extended to four times, it is considered for the reason of the facts that the incompletely oriented region indicated as the middle part of Peterlin's model tends to restore partially to orginal arrangement-a kind of phase transition-as increasing with temperature.

  • PDF

AC PDP의 저온에서의 오방전 개선을 위한 구동 방법 (Driving Method for Mis-discharge Improvement at Low Temperature in AC PDP)

  • 김근수;이석현
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1157-1165
    • /
    • 2009
  • In AC-PDP, it is necessary to achieve high luminance efficiency, high luminance and high definition by adopting technologies such as high xenon concentration, MgO doping, and long gap. However, it is very difficult to apply above technologies because they make the driving voltage margin reduced. Especially, high Xe concentration technology for high efficacy makes not only the driving voltage margin reduced but also the stability of reset discharge decreased at low temperature. In this paper, we studied temperature and voltage dependent stability of reset discharge and present the experimental results of the discharge characteristics at low temperature. In addition, we suggested the mechanism of bright noise and black noise at low temperature. Finally, we proposed double reset waveform to improve the bright noise and descending scan time method to improve the black noise.

Temperature Regulates Melanin Synthesis in Melanocytes

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Sohn, Uy-Dong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.840-845
    • /
    • 2003
  • Temperature change is one of the major environmental factors that influence the human skin. However, the relationship between temperature and melanogenesis has received little attention. In the present study, we investigated the effects of temperature change on melanogenesis in a mouse melanocyte cell line (Mel-Ab), and primary cultured human melanocytes. We found that Mel-Ab cells cultured at low temperatures (31 and 34$^{\circ}C$) produce less melanin than cells at 37$^{\circ}C$. These results were confirmed by experiments upon human melanocytes, demonstrating that the hypopigmenting effect of low temperatures is not cell type dependent. The observed melanin production was found to be accompanied by tyrosinase activity at each temperature, indicating that tyrosinase activity is regulated by temperature. We further examined whether the incubation period at low temperatures plays an important role in the regulation of melanogenesis. Short exposures to 27$^{\circ}C$ for 1 h or 3 h did not affect tyrosinase activity or melanin synthesis, whereas long exposures to 31$^{\circ}C$ for 2 days or 6 days significantly reduced tyrosinase activity and melanin synthesis in a duration-dependent manner. Our results suggest that exposure to low temperature and the duration of this exposure are important regulators of melanogenesis.

수분함유량에 따른 토양의 전기적 파라미터의 주파수의존성 (Frequency-dependent electrical parameters of soils as a function of the moisture content)

  • 이복희;김기복
    • 조명전기설비학회논문지
    • /
    • 제28권6호
    • /
    • pp.68-74
    • /
    • 2014
  • The electrical parameters of soils are highly dependent on the various factors such as types of soil, chemical compositions, moisture content, temperature, frequency, and so on. The analysis of soil parameters is of fundamental importance in design of grounding systems. In this paper, we present the experimental results of frequency-dependent impedance, resistivity, permittivity of soils as functions of types of soil and moisture content. The impedance and resistivity of soils are decreased as the moisture content and the frequency increase. In particular, the variation of the soil resistivity with the frequency is pronounced in the conditions of high resistivity and low moisture content. On the contrary, the permittivity of soils are sharply decreased with increasing the frequency below 10kHz and the frequency-dependent permittivity of soils are highly changed in the conditions of high moisture and low resistivity.

Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells

  • Roh, Hyun-Seog;Jun, Ki-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.153-156
    • /
    • 2009
  • Low temperature methane steam reforming to produce $H_2$ for fuel cells has been calculated thermodynamically considering both heat loss of the reformer and unreacted $H_2$ in fuel cell stack. According to the thermodynamic equilibrium analysis, it is possible to operate methane steam reforming at low temperatures. A scheme for the low temperature methane steam reforming to produce $H_2$ for fuel cells by burning both unconverted $CH_4$ and $H_2$ to supply the heat for steam methane reforming has been proposed. The calculated value of the heat balance temperature is strongly dependent upon the amount of unreacted $H_2$ and heat loss of the reformer. If unreacted $H_2$ increases, less methane is required because unreacted $H_2$ can be burned to supply the heat. As a consequence, it is suitable to increase the reaction temperature for getting higher $CH_4$ conversion and more $H_2$ for fuel cell stack. If heat loss increases from the reformer, it is necessary to supply more heat for the endothermic methane steam reforming reaction from burning unconverted $CH_4$, resulting in decreasing the reforming temperature. Experimentally, it has been confirmed that low temperature methane steam reforming is possible with stable activity.

차체용 강판의 온도에 따른 변형률속도 민감도 연구 (A Study on the Strain-Rate Sensitivity According to the Temperature for Steel Sheets of an Auto-Body)

  • 이희종;송정한;조상순;박성호;허훈
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.132-137
    • /
    • 2006
  • This paper is concerned with the thermo-mechanical behavior including temperature dependent strain-rate sensitivity of steel sheet for an auto-body. In order to identify the temperature dependent strain-rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain-rates from 0.001 /sec to 200 /sec at environmental temperatures varied from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain-rate is from the high speed tensile test. Experimental results show that the strain-rate sensitivity increases at low temperature. It represents that as the strain-rate increases, the variation of flow stress becomes sensitive on the temperature. The results indicate that the flow stress of SPRC35R is more dependent on the changes of strain-rate and temperature than those of SPRC45E.

Multi-physics Analysis for Temperature Rise Prediction of Power Transformer

  • Ahn, Hyun-Mo;Kim, Joong-Kyoung;Oh, Yeon-Ho;Song, Ki-Dong;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.114-120
    • /
    • 2014
  • In this paper, a method for multi-physics analysis of the temperature-dependent properties of an oil-immersed transformer is discussed. To couple thermal fields with electromagnetic and fluid fields, an algorithm employing a user defined function (UDF) is proposed. Using electromagnetic analysis, electric power loss dependent on temperature rise is calculated; these are used as input data for multi-physics analysis in order to predict the temperature rise. A heat transfer coefficient is applied only at the outermost boundary between transformer and the atmosphere in order to reduce the analysis region. To verify the validity of the proposed method, the predicted temperature rises in high-voltage (HV) and low-voltage (LV) windings and radiators were compared with the experimental values.

저온제작 Poly-Si TFT′s의 누설전류 (Leakage Current Low-Temperature Processed Poly-Si TFT′s)

  • 진교원;이진민;김동진;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.90-93
    • /
    • 1996
  • The conduction mechanisms of the off-current in low temperature ($\leq$600$^{\circ}C$) processed polycrystalline silicon thin film transistors (LTP poly-Si TFT's) has been systematically studied. Especially, the temperature and bias dependence of the off-current between unpassivated and passivated poly-Si TFT's was investigated and compared. The off-current of unpassivated poly-Si TFT's is due to a resistive current at low gate and drain voltage, thermal emission current at high gate, low drain voltage, and field enhanced thermal emission current in the depletion region near the drain at high gate and drain voltage. After hydrogenation, it was observed that the off-currents were remarkably reduced by plasma-hydrogenation. It was also observed that the off-currents of the passivated poly-Si TFT's are more critically dependent on temperature rather than electric field.

  • PDF

TMCP로 제조된 고강도 베이나이트강의 유효결정립도와 저온인성에 미치는 Cu와 B의 영향 (Effects of Cu and B on Effective Grain Size and Low-Temperature Toughness of Thermo-Mechanically Processed High-Strength Bainitic Steels)

  • 이승용;황병철
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.520-525
    • /
    • 2014
  • Effects of Cu and B on effective grain size and low-temperature toughness of thermo-mechanically processed high-strength bainitic steels were investigated in this study. The microstructure of the steel specimens was analyzed using optical, scanning, and transmission electron microscopy; their effective grain size was also characterized by electron back-scattered diffraction. To evaluate the strength and low-temperature toughness, tensile and Charpy impact tests were carried out. The specimens were composed of various low-temperature transformation products such as granular bainite (GB), degenerated upper bainite (DUB), lower bainite (LB), and lath marteniste (LM), dependent on the addition of Cu and B. The addition of Cu slightly increased the yield and tensile strength, but substantially deteriorated the low-temperature toughness because of the higher volume fraction of DUB with a large effective grain size. The specimen containing both Cu and B had the highest strength, but showed worse low-temperature toughness of higher ductile-brittle transition temperature (DBTT) and lower absorbed energy because it mostly consisted of LB and LM. In the B-added specimen, on the other hand, it was possible to obtain the best combination of high strength and good low-temperature toughness by decreasing the overall effective grain size via the appropriate formation of different low-temperature transformation products containing GB, DUB, and LB/LM.

LOW DISSIPATION OF EXCITATION ENERGY IN THE PHOTOSYNTHETIC MACHINERY OF CHILLING-SENSITIVE PLANTS DURING LOWTEMPERATURE PHOTOINHIBITION

  • Moon, Byoung Yong;Lee, Shin Bum;Gong, Yong-Gun;Kang, In-Soon
    • Journal of Photoscience
    • /
    • 제5권2호
    • /
    • pp.53-61
    • /
    • 1998
  • Using a squash plant, a chilling-sensitive species, and a spinach plant, a chilling-resistant one, effects of chilling temperature on the photosynthetic machinery were studied in terms of chlorophyll fluorescence. When thylakoid membranes were isolated and subjected to incubation at different temperatures, spinach showed stable photosystem II activity at the low temperature side, in contrast to squash which showed quite severe inactivation at low temperature. When parameters of chlorophyll fluorescence were examined, chilling in darkness did not affect either Fv/Fm or photochemical and non-photochemical quenching, in both types of plants. However, chilling of squash plants under irradiance of medium intensity caused a specific decrease in Fv/Fm accompanied by a decline in energy-dependent quenching. Contrastingly, photosystem li of spinach plants were not much affected by light-chilling. When the pool size of zeaxanthin was examined after exposure to high light at different temperatures, squash plants was shown to have a much lower content of antheraxanthin + zeaxanthin, as compared to spinach plants, during low-temperature photoinhibition. These results suggest that chilling-sensitive plants have low capacity to dissipate excitation energy nonradiatively, when they are exposed to low-temperature photoinhibition, and, as a consequence, more vulnerable to photoinhibitory, damage to the photosynthetic apparatus.

  • PDF