• Title/Summary/Keyword: Temperature fluctuations

Search Result 375, Processing Time 0.026 seconds

Analysis of the Long-term Trend of PM10 Using KZ Filter in Busan, Korea (KZ 필터를 이용한 부산지역 PM10의 장기 추세 분석)

  • Do, Woo-gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.221-230
    • /
    • 2017
  • To determine the effect of air pollution reduction policies, the long-term trend of air pollutants should be analyzed. Kolmogorov-Zurbenko (KZ) filter is a low-pass filter, produced through repeated iterations of a moving average to separate each variable into its temporal components. The moving average for a KZ(m, p) filter is calculated by a filter with window length m and p iterations. The output of the first pass subsequently becomes the input for the next pass. Adjusting the window length and the number of iterations makes it possible to control the filtering of different scales of motion. To break down the daily mean $PM_{10}$ into individual time components, we assume that the original time series comprises of a long-term trend, seasonal variation, and a short-term component. The short-term component is attributable to weather and short-term fluctuations in precursor emissions, while the seasonal component is a result of changes in the solar angle. The long-term trend results from changes in overall emissions, pollutant transport, climate, policy and/or economics. The long-term trend of the daily mean $PM_{10}$ decreased sharply from $59.6ug/m^3$ in 2002 to $44.6ug/m^3$ in 2015. This suggests that there was a long-term downward trend since 2005. The difference between the unadjusted and meteorologically adjusted long-term $PM_{10}$ is small. Therefore, we can conclude that $PM_{10}$ is unaffected by the meteorological variables (total insolation, daily mean temperature, daily mean relative humidity, daily mean wind speed, and daily mean local atmospheric pressure) in Busan.

Study on the Bonomics of Overwintering Small Brown Planthopper, Laodelphax striatellus Falen, in Milyang (밀양에서 월동 애멸구 (Laodelphax striatellus)의 개체군 생태에 관한 연구)

  • 배순도;송유한;박경배
    • Korean journal of applied entomology
    • /
    • v.34 no.4
    • /
    • pp.321-327
    • /
    • 1995
  • This study was conducted to determine the winter ecology of the small brown planthopper (SBPH), laodelphax striatellus Fallen, in Milyang, east Kyungsangnamdo province. The age distribution in the overwintering SBPH population varied according to collection dates. In early December, the population distribution was 60% 4th instar, 30% 3rd instar, 6% 5th instar, 3.4% 2nd instar with very few adults and 1st instar. In early March 5th instars had the highest propotion (47-50%) with 4th instar 44-46%. In early April the adult population was 75-81% of the population. The averaged nymphal instar converted the age distribution of he overwintering SBPH in to the into the numerical values tended to increase continuously. However, there were some differences in the averaged nymphal instar of overwintering SBPH annually and these differences resulted from different age distribution of the overwintering SBPH due to different annual temperature fluctuations during overwitering periods. The weight of the overwintering SBPH increased continuously during overwintering periods. The collection density of the overwintering SBPH population was significantly higher on the levee than in the barley field. Percent nymphal parasitism by haplogonatopus atratus in the overwintering SBPH population averaged about 21% regardless of overwintering years.

  • PDF

Cell-meditated studies on blooming and growth of potentially ichthyotoxic Cochlodinium polykrikoides(Dinophyceae)

  • Cho, Eun-Seob
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.187-188
    • /
    • 2007
  • The fluctuations of biochemical and molecular activities III the harmful dinoflagellate, Cochlodinium polykrikoides, depending on water temperatures, were studied. In genomic DNA concentration, a similar value of 0.6 was shown at $12^{\circ}C$ and $15^{\circ}C$, but significantly increasing DNA from $18^{\circ}C$ (p<0.05), with a maximum of 1.8 at $24^{\circ}C$. After$24^{\circ}C$, the DNA significantly decreased to 0.6. Likely, the concentrations of RNA and total protein were at their highest values of 1.7 and 0.07 g $mL^1$ at $24^{\circ}C$, respectively. In contrast to ONA, RNA and total protein began to increase at $15^{\circ}C$. Oxygen availability between lower and higher temperatures was significantly different and increased from $18^{\circ}C$ according to light intensity, regardless of wavelengths (p<0.05). At $24^{\circ}C$, the highest value of the maximum electron transport rate (ETRmax), ranging from 537.9 (Ch 1) to 602.5 mol electrons $g^{-1}$ Ch1 a $s^{-1}$ (Ch 4), was also shown. Nitrate reductase (NR) and ATPase activities were at their highest values of 0.11 mol $NO_2^-g^{-1}$ Ch1 a $h^{-1}$ and 0.78 pmol 100 $mg^{-1}$ $at^2$ $4^{\circ}C$, respectively. When the cells cultured at $15^{\circ}C$, NR and ATPase activities significantly increased compared to $12^{\circ}C$ (p<0.05). In an analysis of CHN, the concentration of C and N also significantly increased (p<0.05). However, at $27^{\circ}C$, most of the molecular and biochemical movements were much lower, compared to $24^{\circ}C$. These results suggest that C. polykrikoides is very sensitive biochemical and molecular activities depending on water temperatures. Possibly, it is desirable to estimate at $18^{\circ}C$ the initiation of the massive blooming development of C. polykrikoides. In nature, it will be very difficult to maintain the massive blooms after $24^{\circ}C$ because of the possibility of significantly decreasing the molecular movement and activity of C. polykrikoides.

  • PDF

New K-Ar dating system in Korea Basic Science Institute: Summary and Performance (한국기초과학지원연구원에 도입된 K-Ar 연대 측정시스템: 개요 및 성능)

  • 김정민
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.172-178
    • /
    • 2001
  • K-Ar dating system of Korea Basic Science Institute (KBSI) was installed in 1997 and has been used since then. The system consists of high temperature graphite furnace, gas purification system, and mass spectrometer with data acquisition system. K-Ar age is determined by the measurement of the concentrations of Ar and K through isotope dilution method using $^{38}Ar$ as spike and flame spectroscopy, respectively. The accuracy and reliability for the K-Ar age are checked using the several K-Ar standard materials. Although the exact age determination for young samples of less than 1 Ma is hampered by small fluctuations of sensitivity and mass discrimination, the present system yields the reliable K-Ar age compared to the standard materials of Tertiary and Mesozoic age. The measurements for the SORI93 biotite with the recommended K-Ar age of $92.6\pm$0.6 Ma and Bern4M muscovite of $18.5\pm$0.6 Ma yield the reliable age of $92.1\pm$1.1 Ma and $17.8\pm$0.2 Ma, respectively.

  • PDF

An Application of Algebraic Stress Model to a Two-Dimensional Buoyant Surface Jet (2차원 표층밀도분류에 대한 대수응력모델의 적용)

  • 김기흥;함계운;박준일;허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.248-256
    • /
    • 1995
  • The numerical study on the surface buoyant jets has remained of requiring more intensive investigation for problems due to the treatments of free surface, Reynolds stress/flux terms in turbulent flow and especially buoyancy effects on the turbulent fluctuation. etc. The verification of predicted results from the numerical study continues in the qualitative study. because of the lack of experimental data, which seems to be due to the difficulties in measuring the turbulent fluctuations in concentration or temperature fields. In this study, the computer program of Algebraic Stress Model has been developed to investigate the behaviours of two-dimensional surface buoyant jets with free surface boundary condition. The computational results are compared with published experimental data. By comparing these results with experimental data. it is found that this model can predict fairly well the flow characteristics of two-dimensional surface buoyant jets in the momentum-dominant region and buovancy-dominant region. Especially, it is proved that this model can predict the flow characteristics reasonably in buoyancy-dominant region stably stratified due to buoyancy effect.

  • PDF

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

PHYSICAL PROPERTIES OF THE GIANT H II REGION G353.2+0.9 IN NGC 6357

  • BOHIGAS JOAQUIN;TAPIA MAURICIO;ROTH MIGUEL;RUlZ MARIA TERESA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.281-284
    • /
    • 2004
  • Optical imaging and spectroscopy of G353.2+0.9, the brightest part of the giant H II region NGC 6357, shows that this H II region is optically thin, contains ${\~}300\;M_{\bigodot}$ of ionized gas and is probably expanding into the surrounding medium. Its chemical composition is similar to that found in other H II regions at similar galactocentric distances if temperature fluctuations are significant. The inner regions are probably made of thin shells and filaments, whereas extended slabs of material, maybe shells seen edge-on, are found in the periphery. The radio continuum and H$\alpha$ emission maps are very similar, indicating that most of the optical nebula is not embedded in the denser regions traced by molecular gas and the presence of IR sources. About $10^{50}$ UV photons per second are required to produce the H$\beta$ flux from the 1l.3'${\times}$10' region surrounding the Pis 24 cluster that is south of G353.2+0.9. Most of the energy powering this region is produced by the 03-7 stars in Pis 24. Most of the 2MASS sources in the field with large infrared excesses are within G353.2+0.9, indicating that the most recent star forming process occured within it. The formation of Pis 24 preceded and caused the formation of this new generation of stars and may be responsible for the present-day morphology of the entire NGC 6357 region.

Development of Estimating Method for Areal Evapotranspiration using Satellite Data (인공위성 자료를 활용한 광역증발산량의 산정방법 개발)

  • Shin, Sha-Chul;An, Tae-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.71-81
    • /
    • 2007
  • One of the most important hydrologic components is evapotranspiration. It is a process by which water is evaporated from moist land surfaces and transpired into atmosphere by plants. There are many methods of estimating evapotranspiration rate and its potential such as the methods of soil-moisture sampling, lysimeter measurements, water balance, energy balance, groundwater fluctuations and evapotranspiration. But it is very difficult to estimate evapotranspiration in terms of regional discrete characteristics of topography and/or vegetation. The evapotranspiration is strongly affected by ground covering vegetation, and the degree of vegetation growth. In order to grasp vegetation condition over a vast study area, NDVI (Normalized Difference Vegetation Indices) calculated from the data obtained from NOAA/AVHRR were utilized. Through multi-regression analysis, we developed a model equation to estimate the evapotranspiration using NDVIs and temperature data.

  • PDF

Characteristics of Regional Distribution of Pollen Concentration in Korean Peninsula (한반도 지역에서 관측된 꽃가루 농도 특성에 관한 연구)

  • Park, Ki-Jun;Kim, Heon-Ae;Kim, Kyu-Rang;Oh, Jae-Won;Lee, Sun-Young;Choi, Young-Jean
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.167-176
    • /
    • 2008
  • Airborne pollen is known as one of the major causal agents to respiratory allergic reactions. Daily number of pollen grains was monitored using Burkard volumetric spore traps at seven locations including Seoul and Jeju during 1997-2007. Pollen grains were observed throughout the year especially from February to November. They showed similar distribution patterns of species among locations except in Jeju, where Japanese cedar vegetation is uniquely found. Peak seasons for pollen grains from trees and weeds were March to May and August to October, respectively. Tree pollens were mainly composed of pine, oak, alder, and birch. Weed pollens were mainly from Japanese hop, Worm wood, and ragweed. Diameter of pollen grains, which has a typical range of $20{\sim}60{\mu}m$, has close relationship with allergenicity. Allergenicity of tree and weed pollens is higher than that of grass pollens in general. In the case of trees and shrubs, pine trees account for about 70% of all tree pollens. However, pine pollens are weak allergens. The remaining 30% of tree pollens, including alder trees, white birches, and oaks, are moderate to strong allergens despite the smaller numbers. Grass and weeds are also highly likely to cause allergies. Especially, the pollens of Wormwood and Japanese hop are highly likely to cause allergies. Daily fluctuations in the number of pollens have to do with a variety of meteorological factors, such as temperature and rainfall.

Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting (자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자)

  • Kim, Ki-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2021
  • The characteristics of the foundry sand were analyzed for water jacket core required to prevent structural deformation from the heat generated in the cylinder bore during the casting of the cylinder block of an automobile. The sand core tensile strength tester, AFS-GFN, and optical microscope were used to evaluate the its properties. If the SiO2 content is high in the foundry sand, the dimensional defects and veining defects occur due to high temperature expansion. Also, if it is too low, the core breakage, porosities, chemical burn-on defects occur. The particle size index and grain shape influenced the core strength and resin consumption, resulting in fluctuations in defect types. The higher the alkalinity of the dried sand, the lower the core strength. And the more basic, the lower the core strength. At the resin content of 1.6~1.8%, the increase in core strength after 1 hour curing was approximately at its maximum.