• Title/Summary/Keyword: Temperature drift compensation

Search Result 21, Processing Time 0.026 seconds

Study on the Temperature Drift Adaptive Compensation Algorithm of a Magneto-Electric Encoder Based on a Simple Neuron

  • Wang, Lei;Hao, Shuang-Hui;Song, Bao-Yu;Hao, Ming-Hui
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1254-1262
    • /
    • 2014
  • Magneto-electric encoders have been widely used in industry and military applications because of their good shock resistance, small volume, and convenient data processing. However, the characteristics of a magneto-electric encoder's signal generator and hall sensor changes minimally with temperature variation. These changes cause an angle drift. The main purpose of this study is to construct the compensation system of a neural network and constantly update weight coefficients of temperature correction by finite iteration calculation so that the angle value modified can approach the angle value at the target temperature. This approach is used in adaptive correction of the angle value.

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.

Short term Sensor's Drift Compensation by using Three Drift Correction Techniques (세 가지 드리프트 보정 기법을 이용한 단기 센서 드리프트 보정)

  • Jeon, Jin-Young;Choi, Jang-Sik;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.291-296
    • /
    • 2016
  • The ideal chemical sensor must show the similar result under the same condition for accurate measurement of gases regardless of time. However, the actual responses of chemical sensors have been shown the lacks of repeatability and reproducibility because of the drift which has been caused by aging and pollution of the sensor and the environment change such as temperature and humidity. If the problems are not properly taken into considerations, the stability and reliability of the system using chemical sensors would be decreased. In this paper, we analyzed the sensor's drift and applied the three different compensation methods(DWT( Discrete Wavelets Transform), Baseline Manipulation, Internal Normalization) for reducing the effects of the drift in order to improve the stability and the reliability of short term of the chemical sensors. And in order to compare the results of the methods, the standard deviation was used as a criterion. The sensor drift was analyzed by a trend line graph. We applied the three methods to the successive data measured for three days and compared the results. As a result of comparison, the standard deviation of DWT showed lowest value. (Before compensation: 7.1219, DWT: 1.3644, Baseline Manipulation: 2.5209, Internal Normalization: 3.1425).

Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer

  • Luo, Yanxia;Yin, Rui;Ji, Wei;Huang, Qingjie;Gong, Zisu;Li, Jingyao
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.558-565
    • /
    • 2020
  • A wavelength-independent optical sensor based on an asymmetric Mach-Zehnder interferometer (AMZI) is proposed. The optical sensor based on an AMZI is very sensitive to wavelength, and wavelength drift will lead to measurement error. The optical sensor is compensated to reduce its dependence on wavelength. The insensitivity of the optical sensor to wavelength mainly depends on the compensation structure, which is composed of an AMZI cascaded with another AMZI and can compensate the wavelength drift. The influence of wavelength drift on the optical sensor can be counteracted by carefully designing the size parameters of the compensation structure. When the wavelength changes from 1549.9 nm to 1550.1 nm, the error after compensation can be lower than 0.066%. Furthermore, the effect of fabrication tolerance on compensation results is analyzed. The proposed compensation method can also be used to compensate the drift of other parameters such as temperature, and can be applied to the compensation of other interference-based optical devices.

The Improvement in Offset and Temperature Drift on Silicon Piezoresistive Pressure Sensor (실리콘 압저항 압력센서의 오프셋 및 온도 드리프트 개선)

  • Kim, Jae-Mun;Lee, Young-Tae;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 1996
  • In order to reduce the offset and its temperature drift by the different properties of the piezoresistors and the residual stress of the piezoresistive pressure sensor, a double Wheatstone-bridge pressure sensor was studied. Because the compensation bridge was arranged near by the pressure sensitive bridge, which have the similar offset component, reduction of the offset and its temperature drift was realized by the mathematical subtraction of the output of two bridges. It was configured the compensation of the offset and its temperature drift. By this compensation method, the offset and its temperature drift were reduced approximately 95% respectively. The sensitivity of the fabricated pressure sensor was $11.7\;mV/Vkg/cm^{-2}$ for $0.9\;kgfcm^{-2}$ full-scale pressure range.

  • PDF

Research on the Experiment Methods for the Compensation of Thermal Distortion of Machine Tool Spindle (공작기계 주축 열변형 보정을 위한 실험방법에 관한 연구)

  • 고태조;김희술;김형식;김선호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.375-379
    • /
    • 1997
  • Thermal drift of the machine tool spindle due to temperature increase dominates the major source of the machine tool error. To compensate the thermal errors, software based error correction methods could be implemented. In th~s case, we need model to map the relationship between temperature and thermal distortion. Traditionally, two or three different methods have been trled: step increase of spindle speed, constant, random. The latter two methods are described in the document of ISOlDIS230-3. In this research, three different methods were verified through the experiments from the viewpoint of compensation of thermal distortion. Constant spindle speed turned out good enough for monitoring the behavior of the thermal drift and modeling the relationship between temperature and thermal distortion.

  • PDF

Drift error compensation for vision-based bridge deflection monitoring

  • Tian, Long;Zhang, Xiaohong;Pan, Bing
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.649-657
    • /
    • 2019
  • Recently, an advanced video deflectometer based on the principle of off-axis digital image correlation was presented and advocated for remote and real-time deflection monitoring of large engineering structures. In engineering practice, measurement accuracy is one of the most important technical indicators of the video deflectometer. However, it has been observed in many outdoor experiments that data drift often presents in the measured deflection-time curves, which is caused by the instability of imaging system and the unavoidable influences of ambient interferences (e.g., ambient light changes, ambient temperature variations as well as ambient vibrations) in non-laboratory conditions. The non-ideal unstable imaging conditions seriously deteriorate the measurement accuracy of the video deflectometer. In this work, to perform high-accuracy deflection monitoring, potential sources for the drift error are analyzed, and a drift error model is established by considering these error sources. Based on this model, a simple, easy-to-implement yet effective reference point compensation method is proposed for real-time removal of the drift error in measured deflections. The practicality and effectiveness of the proposed method are demonstrated by in-situ deflection monitoring of railway and highway bridges.

Real time compensation for quasistatic errors of a horizantal machining center (수평 머시닝 센터의 준 정적 오차의 실시간 보정)

  • Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

The Bias Drift Due to Fiber Coil Temperature Variation and the Temperature Compensation in Fiber Optic Gyroscope (광섬유자이로의 고리 온도변화에 의한 바이어스 특성 및 온도 보상)

  • Jo, Min-Sik;Chong, Kyoung-Ho;Do, Jae-Chul;Choi, Woo-Seok;Song, Ki-Won;Kang, Su-Bong;Shin, Won-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.222-227
    • /
    • 2009
  • The bias characteristics due to the changes of temperature and temperature gradient of fiber coil are investigated in fiber-optic gyroscope. The bias performance is degraded with the changes of temperature and temperature gradient of fiber coil. The temperature compensation using both the temperature-dependent bias measurement and the temperature-induced error model of fiber-optic gyroscope improves the bias stability about 3 times as much as the uncompensated original case, which leads to very stable bias performance over the temperature range from $-35^{\circ}C$ to $+77^{\circ}C$.

A Multi-Channel A/D Data Acquisition System (다중채널 A/D 변환 데이터획득시스템의 개발)

  • Park, Chan-Won;Lee, Min-Seob;Ban, Yun-Ho
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.183-189
    • /
    • 2005
  • In precision instrumentation system, an A/D conversion of signal conditioning has some problems.; offset and drift errors with environmental situation. This paper suggested a development of the Multi-Channel A/D Data Acquisition System and a method of the evaluation and the temperature compensation for the A/D converters with the specific analog and digital circuit including the software. Also, we have designed a hardware and a software filters with smart algorithm for better signal processing of the proposed system. Software approach was adopted to obtain the stable data from A/D converter. As shown in our experimental works, the proposed system is expected to be used in the industrial field where a high precision measurement is required.

  • PDF