• Title/Summary/Keyword: Temperature distribution measurement

Search Result 484, Processing Time 0.031 seconds

Experimental Study on the Thermal Characteristics in Ondol Heating Systems (온돌난방주택의 난방방식별 열 특성에 관한 실험연구)

  • 윤정숙
    • Journal of the Korean housing association
    • /
    • v.1 no.1
    • /
    • pp.91-102
    • /
    • 1990
  • The aim of this study is to discover thermal characteristics of Ondol heating systems. The housing subjected was categorized into detached single family houses and apartments, reinforced concrete and brick structures, intermittent and continous heating system, and the space subjected was bedroom. In order to understand the thermal characteristics of each floor heating systems, the vertical distribution of indoor temperature and the distribution of surface temperature on the floor were measured. The vertical distribution of indoor temperature except the measurement point 1 largely showed average temperature distribution, and the temperature of the measurement point 1 in the housing surveyed showed the highest temperature in the house "sample A" because of the radiation heating from the floor of the Ondol room. As the result of the measurement, the thermal characteristics of each heating system were more stable distribution in apartments of R.C structure.structure.

  • PDF

Temperature distribution analysis of steel box-girder based on long-term monitoring data

  • Wang, Hao;Zhu, Qingxin;Zou, Zhongqin;Xing, Chenxi;Feng, Dongming;Tao, Tianyou
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.593-604
    • /
    • 2020
  • Temperature may have more significant influences on structural responses than operational loads or structural damage. Therefore, a comprehensive understanding of temperature distributions has great significance for proper design and maintenance of bridges. In this study, the temperature distribution of the steel box girder is systematically investigated based on the structural health monitoring system (SHMS) of the Sutong Cable-stayed Bridge. Specifically, the characteristics of the temperature and temperature difference between different measurement points are studied based on field temperature measurements. Accordingly, the probability density distributions of the temperature and temperature difference are calculated statistically, which are further described by the general formulas. The results indicate that: (1) the temperature and temperature difference exhibit distinct seasonal characteristics and strong periodicity, and the temperature and temperature difference among different measurement points are strongly correlated, respectively; (2) the probability density of the temperature difference distribution presents strong non-Gaussian characteristics; (3) the probability density function of temperature can be described by the weighted sum of four Normal distributions. Meanwhile, the temperature difference can be described by the weighted sum of Weibull distribution and Normal distribution.

A study on the non-contact measurement for the temperature of shadow mask of Cathode Ray Tube using InSb photo sensor (인듐안티모나이드 포토 센서를 이용한 CRT 섀도우 마스크의 비접촉 온도 측정에 관한 연구)

  • 강대진;박정우;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 1997
  • This paper presents the experimental study of the non-contact temperature measurement for the shadow mask of cathode ray tube using InSb sensor. At present, High resolution of CRT(Cathode Ray Tube) is needed broadly; therefore, the measurement of temperature distribution of shadow mask in CRT during operation is important to analyze the thermal deformation of shadow mask. Most of the studies could not measure the temperature distribution of shadow mask precisely. We studied the temperature dis- tribution of shadow mask using InSb photo sensor for 17" cathode ray tube (CRT). Experiments using ther- mocouple are performed to validate the results of non-contact measurement. The results agree well with those results of non-contact method using InSb sensor.nsor.

  • PDF

A Study on the Distribution of Friction Heat generated by CMP Process (CMP 공정에서 발생하는 연마온도 분포에 관한 연구)

  • 김형재;권대희;정해도;이용숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.42-49
    • /
    • 2003
  • In this paper, we provide the results of polishing temperature distribution by way of infrared ray measurement system as well as polishing resistance, which can be interpreted as tribological aspects of CMP, using force measurement system. The results include the trend of polishing temperature, its distribution profile and temperature change during polishing. The results indicate that temperature affects greatly to the removal rate. Polishing temperature increases gradually and reaches steady state temperature and the period of temperature change occurs first tens of seconds. Furthermore, the friction force also varies as the same pattern with polishing temperature from high friction to low. These results suggest that the first period of the whole polishing time greatly affects the nonuniformity of removal rate.

Real Time Temperature Distribution Measurement of a Microheater by Using Off-Axis Digital Holography (Off-Axis 디지털홀로그래피를 이용한 마이크로히터의 실시간 온도분포측정)

  • Tserendolgor, D.;Baek, Byung-Joon;Kim, Dae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • We describe a single shot off-axis digital holography based on a Mach-Zehnder interferometic scheme for measuring temperature distribution of a microheater. The proposed scheme has the capability of reconstructing object phase image which is dependent of the temperature distribution in real time. Experimental results shows that there is a moderate linear relationship between the measured phase and temperature in the range of $20^{\circ}C$ to $60^{\circ}C$. We expect that the proposed system can provide a very reliable and fast solution in various surface temperature distribution measurement applications.

Sensor Nodes Localization for Temperature Distribution Measurement System

  • Ohyama, Shinji;Alasiry, Ali Husein;Takayama, Junya;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1781-1786
    • /
    • 2005
  • In sensor network systems, all the nodes are interconnected and the positional information of each sensor is essential. To measure the temperature, position detection and communication functions are required. Many sensor nodes are distributed to a measurement field, and these sensors have three main functions: they measure the distance to the other nodes, the data of which are used to determine the position of each node; they communicate with other nodes; and they measure the temperature of each node. A novel range measurement method using the difference between light and sound propagation speed is proposed. The experimental results show the temperature distribution as measured with the aid of the determined positions. The positions of every node were calculated with a PC program. Eight nodes were manufactured and their fundamental functions were tested. The results of the range measurement method, which takes relatively accurate measurements, contribute significantly to the accuracy of the position determination. Future studies will focus on 3-D position determination and on the architecture of appropriate sensors and actuators.

  • PDF

Measurement of Internal Temperature Distribution for the Evaluation of Focused Ultrasound (FUS) Stimulation Devices (집속초음파 자극기의 성능평가를 위한 팬텀 내부온도 측정)

  • Doh, Il;Joe, Daniel J.;Kim, Sung Mok;Baik, Kyung Min;Kim, Yong Tae;Park, Seung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • This research is to measure real-time temperature distribution inside a tissue-mimicking phantom for the safety and effectiveness evaluations of focused ultrasound (FUS) device capable of linear scanning stimulation. Since the focusing area of the FUS stimulation device is smaller than diameter of conventional thermal probe and keeps moving, it is impossible to monitor temperature distribution inside the phantom. By using the phantom with a thin film temperature sensor array inserted, real-time temperature change caused by the FUS device was measured. The translation of the measured temperature peak was also tracked successfully. The present phantom had been experimentally proven to be applicable to validate the performance and safety of the therapeutic ultrasound devices.

Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone (드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정)

  • Kim, Heesang;Park, Yonghe;Kim, Wooyoung;Eun, Heeram;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

THEORITICALL ANALYSIS OF TEMPERATURE DISTRIBUTION IN TWO-DIMENSIONAL FIELD USING F.E.M (유한요소법을 이용한 2차원 Field 내의 온도분포의 이론적 해석)

  • Kim, N.H.;Choi, C.S.;Choi, H.H.;Hong, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1292-1295
    • /
    • 1987
  • In noninvasive temperature measurement within body, this paper is presented temperature measurement method in security and with effect from Applicator by electromagnetic, and it is analyzed heat generation quantity or temperature rise distribution by computer simulation within body. In this paper, two-dimensional model is considered and temperature distribution produced by RF capacitive heating system is analyzed by using Finit Element Method (F.E.M). A passibility of temperature distribution control is examined based on the position and size of Applicator.

  • PDF

A Study on Temperature Measurement for Quenching of Carbon Steel (탄소강 담금질 공정의 온도 측정방법에 대한 고찰)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • To achieve desired microstructure and mechanical property of a manufacturing product, heat treatment process is applied as a secondary process after forging. Especially, quenching process is used for improving strength, hardness, and wear resistance since phase transformation occurs owing to rapid heat transfer from the surface of the specimen. In the present paper, a study on surface temperature measurement for water quenching of eutectoid steel was investigated. In order to determine the temperature history in experiments, three different measuring schemes were used by varying installation techniques of K-type thermocouples. Depending on the measured temperature distribution at the surface of the specimen, convective heat transfer coefficients were numerically determined as a function of temperature by the inverse finite element analysis considering the latent heat generation due to phase transformation. Based on the inversely determined convective heat transfer coefficient, temperature, phase, and hardness distributions in the specimen after water quenching were numerically predicted. By comparing the experimental and computational hardness distribution at three different locations in the specimen, the best temperature measuring scheme was determined. This work clearly demonstrates the effect of temperature measurement on the final mechanical property in terms of hardness distribution.