Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.2.106

Real Time Temperature Distribution Measurement of a Microheater by Using Off-Axis Digital Holography  

Tserendolgor, D. (Division of Mechanical System Engineering, Chonbuk National University)
Baek, Byung-Joon (Division of Mechanical System Engineering, Chonbuk National University)
Kim, Dae-Suk (Division of Mechanical System Engineering, Chonbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.2, 2011 , pp. 106-113 More about this Journal
Abstract
We describe a single shot off-axis digital holography based on a Mach-Zehnder interferometic scheme for measuring temperature distribution of a microheater. The proposed scheme has the capability of reconstructing object phase image which is dependent of the temperature distribution in real time. Experimental results shows that there is a moderate linear relationship between the measured phase and temperature in the range of $20^{\circ}C$ to $60^{\circ}C$. We expect that the proposed system can provide a very reliable and fast solution in various surface temperature distribution measurement applications.
Keywords
Surface temperature distribution measurement; Single shot off-axis digital holography; Digital reference wave; Numerical reconstruction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. A. Walsh and M. R. D. Davies, Exp. Therm. Fluid Sci. 30, 853 (2006).   DOI
2 V. Sajith, D. Haridas, C. B. Sobhan, G. R. C. Reddy, J. Therm. Sci. 30, 1 (2010).
3 A. Mialdun and V. M. Shevtsova, J. Heat and Mass Transfer 51, 3164 (2008).   DOI
4 U. Shnars and W. P. O. Juptner, Digital recording and numerical reconstruction of holograms (Meas. Sci. Technol. Vol. 13, 2002), pp. 85-101.
5 J. W. Goodman and R. W. Lawrence, J. Appl. Phys. Lett. 11, 77 (1967).   DOI
6 D. Gabor, A new microscopic principle (Nature, London, 1948), pp. 161, 777-778.
7 I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).   DOI
8 Y. Takaki, H. Kawai, and H. Ohzu, Appl. Opt. 38, 4990 (1999).   DOI
9 E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).   DOI
10 R. W. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavkii, Sov. Phys. Tech. 17, 333 (1972).
11 E. Leith and J. Upatnieks, J. Opt. Soc. Am. 55, 569 (1965).   DOI
12 G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, J. Appl. Phys. B 90, 527 (2008).   DOI
13 T. Oh, J. Korean Vacuum Soc. 18, 435 (2009).   DOI
14 D. Naylor, J. Heat Fluid Flow 24, 345 (2003).   DOI
15 F. Mayinger and O. Feldmann, Optical Measurements Techniques and Applications in Heat and Mass Transfer (Springer Verlag, Berlin, Heidelberg, 2001), pp. 5-7, 17-37.
16 I. Kim, E. Oh, Y. S. Kim, S. W. Kim, I. Park, and W. R. Lee, J. Korean Vacuum Soc. 19, 141 (2010).   DOI
17 M. Goharkhah, M. Ashjaee, and K. Madanipour, J. Exp. Therm. Fluid Sci. 33, 1188 (2009).   DOI