• Title/Summary/Keyword: Temperature calibration

Search Result 515, Processing Time 0.03 seconds

Uncertainty in the Calibration of Coaxal Thermal Noise Sources using a Noise Figure Measuring Equipment

  • Kang, Tae-Weon;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • In this paper, the uncertainty in the calibration of coaxial thermal noise sources using a noise figure measuring (NFM) equipment is evaluated. Contributions to the uncertainty such as the calibration uncertainty of the standard noise source, mismatch, measurement of adapter efficiency, ambient temperature variation, and repeatability are evaluated in the frequency range of 10 MHz to 18 ㎓. Results show that the expanded uncertainty(k=2) is 0.23 ㏈ for the noise sources of 5 ㏈ and 15 ㏈ ENR, and 0.27 ㏈ for those of 21 ㏈.

CALIBRATION OF PHYSICAL QUANTITIES IN DDO PHOTOMETRIC SYSTEM

  • Sung, Hwan-Kyung;Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.20 no.2
    • /
    • pp.63-94
    • /
    • 1987
  • Using many homogeneous data of DDO and UBV colors for all luminosity classes and physical quantities known from spectroscopic observations, new calibration schemes with DDO photometric parameters are presented for metal abundance, effective temperature and surface gravity of stars. And an intrinsic color relation is derived for the reddening estimate.

  • PDF

An Experimental Study on Calibration Method of Heat Flux Sensor by using Helium Gas (헬륨을 이용한 열유속센서 검정방법의 실험적 연구)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1219-1224
    • /
    • 2004
  • The objective of this study is to propose an experimental calibration facility in which a heat flux sensor can be calibrated under conductive condition by using helium gas. The heat flux calibration facility was designed, simulated and manufactured for use in a high heat transfer condition. It delivers heat fluxes up to a maximum of 35 KW $m^{-2}$. A copper block heated electrically with 3.5 KW power is designed to produce uniform temperature up to 600 K across its face. High heat fluxes are provided between hot plate and cold plate by 1 mm height helium filled gap. A cold plate is maintained around 300 K through pool boiling using a refrigerant and water-cooled heat exchanger. A simulation was conducted to verify the design of the main test section. To verify the performance of calibration facility, a heat flux sensor was examined. The measured heat fluxes were compared to the calculated one.

  • PDF

ABSOLUTE RADIOMETRIC CALIBRATION OF 1M SATELLITE IMAGERY

  • Lee Sun-Gu;Lee Dong-han;Seo Doo-chun;Song Jeong Heon;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.616-619
    • /
    • 2005
  • CALNAL team of Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration of 1m satellite image on Daejeon and the cal/val site of Goheung. The satellite image have spatial resolution of 1m in panchromatic spectral band of 450-900nm. The performed cal/val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data used only to test in Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance estimate. Derived TOA is compared with DN of overpass satellite to calculate calibration coefficient of gain and offset.

  • PDF

A design of analog ZQ calibration with small CIO capacitance (CIO capacitance가 작은 analog ZQ calibration 의 설계)

  • Park, Kyung-Soo;Choi, Jae-Woong;Chae, Myung-Joon;Kim, Ji-Woong;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.577-578
    • /
    • 2008
  • This paper proposes new analog ZQ calibration scheme. Proposed analog ZQ calibration scheme is for minimizing the reflection which degrade the signal integrity. And this scheme is for minimizing CIO capacitance. It is simulated under 1.5v supply voltage and samsung 0.18um process. Power consumption of proposed analog ZQ calibration circuit was improved by 32%. Under all skew, temperature from $30^{\circ}C$ to $90^{\circ}C$ and Monte carlo simulation, quantization error of RZQ(=$240{\Omega}$) is less han 1.07%.

  • PDF

Calibration Methods for Measurement Uncertainty of Power Assembly Tools (동력식 조립공구의 측정불확도 산출방법 개발)

  • Oh, Se-heon;Kang, Ki-young;Hong, Min-sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.496-501
    • /
    • 2015
  • In this study, calibration procedure of power assembly tools is suggested and methods are developed for calculating measurement uncertainty. Fist of all, the calibration of joint simulator bench (JSB) was carried out for maintaining traceability and the uncertainty components of JSB were analyzed. The influences of tool speed, tolerance, temperature and length of the adapter were examined by the torque measurement values through experiments. From this research, credibility for calibration results could be enhanced. This experimental results, being used as an effective tool for calibration of power assembly tools, will provide and improve the accuracy of the use of the power assembly tools.

Study on the Brightness Temperature Measurement in the Human Body Using Millimeter-wave Radiometer (밀리미터파 라디오미터를 이용한 인체의 내부 밝기온도 측정에 관한 연구)

  • Jung, Min Kyoo;Kim, Tae Hun;Nah, Seung Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.163-167
    • /
    • 2016
  • We have developed a millimeter-wave radiometer system for applications in the fields of medical imaging. In this paper, we introduced the brightness temperature measurement in the human body using Millimeter-wave Radiometer. Calibration of sensitivity of the radiometer system is essential to measure equivalent temperature (brightness temperature) of objects. We have developed, as a calibration source, a new type of black body for the millimeter wave region with temperature control capability. The system noise figure and temperature sensitivity of the system measured using the blackbody are 3.3 dB and 0.1 K, respectively. The brightness temperature of human body through clothes was measured to be around $38^{\circ}$[C].

The calculation and Measurement Methods for G/T of the Telemetry Small Aperture Antenna (원격자료수신장비 소형반사판 안테나 G/T 예측 및 측정)

  • Kim, Chun-Won;An, Na-Gyun;Kim, Dong-Hyun;Cho, Byung-Lok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.657-662
    • /
    • 2022
  • In this paper, the calculation using simulation and two measurement methods for G/T of the telemetry are analyzed. Antenna gain and noise temperature are calculated by using ICARA and Antenna Noise Temperature Calculator. System G/T were calculated by using Antenna gain/noise temperature, LNA gain/noise temperature, cable loss. The first G/T measurement method is Y-factor measurement method, which is to calculate G/T by comparing LNA noise temperature and a signal level difference when an antenna and a 50ohm termination are respectively connected to an LNA input terminal Second method is Solar calibration measurement method that is to calculate G/T by comparing noise level difference when looking at the sun and lowest level point. Finally, the accuracy was reviewed by comparing the G/T calculation results with the two measurement methods, and the optimal measurement method according to antenna performance and operating environment was presented.

A 12-bit Hybrid Digital Pulse Width Modulator

  • Lu, Jing;Lee, Ho Joon;Kim, Yong-Bin;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, a 12-bit high resolution, power and area efficiency hybrid digital pulse width modulator (DPWM) with process and temperature (PT) calibration has been proposed for digital controlled DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential tapped delay line ring-mux digital-to-time converter (DTC) schema and a 6-bit counter-comparator DTC schema, resulting in a power and area saving solution. Furthermore, since the 6-bit differential delay line ring oscillator serves as the clock to the high 6-bit counter-comparator DTC, a high frequency clock is eliminated, and the power is significantly saved. In order to have a simple delay cell and flexible delay time controllability, a voltage controlled inverter is adopted to build the deferential delay cell, which allows fine-tuning of the delay time. The PT calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs and a lookup table. The monitor circuits sense the PT (Process and Temperature) variations, and the flash ADC converts the data into a digital code. The complete circuits design has been verified under different corners of CMOS 0.18um process technology node.

Precise Temperature Control by Adjusting Flow of Liquid Nitrogen (액체 질소의 흐름 조절을 통한 저온 정밀 온도 제어)

  • Yang, Inseok;Lee, Jee-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2016
  • We devised a method to control the temperature of a liquid bath as low as $-100^{\circ}C$ using the duty cycle control of a solenoid valve. The solenoid valve controls the flow of liquid nitrogen that we used as a cryogen in this system. By controlling the duty cycle of a solenoid valve using feedback from the measured temperature of the liquid bath, we were able to achieve temperature stability within ${\pm}19mK$ around $-100^{\circ}C$. We also demonstrated that by taking average values of the temperature readings for sequence of measurements from more than one thermometer, it is possible to use this system for the calibration of thermometers within 3 mK. This system and the control method can be used for the precise temperature control in the range between $0^{\circ}C$ and $-100^{\circ}C$, where commercially available precision baths are much expensive and hard to be built in customized configurations.