• Title/Summary/Keyword: Temperature Reduction

Search Result 4,527, Processing Time 0.041 seconds

Distribution characteristics and community structure of picophytoplankton in the northern East China Sea in 2016-2017 (2016~2017년 동중국해 북부해역의 초미소식물플랑크톤 분포 특성)

  • Park, Kyung Woo;Yoo, Man Ho;Oh, Hyun Ju;Youn, Seok Hyun;Kwon, Kee Young;Moon, Chang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.93-108
    • /
    • 2019
  • To investigate the temporal-spatial distribution of picophytoplankton in relation to different water masses in the northern East China Sea (ECS), picophytoplankton abundance were investigated using flow cytometry with environmental factors in 2016-2017. The results from the analysis of flow cytometer data showed that Synechococcus appeared across all seasons, exhibiting its minimum abundance in winter and maximum abundance in summer. Furthermore, high abundance was detected in the surface mixed layer during spring and summer when vertical stratification occurs; in particular, Synechococcus exhibited maximum abundance in thermocline layer, indicating a close correlation to water temperature and thermocline formation. In addition, the abundance of Synechococcus indicated a decrease in the western seas in 2017 compared to 2016 under the strong influence of the Changjiang Diluted Water (CDW). This was determined by the significant influence of the CDW on the abundance of Synechococcus during summer in the northern waters of the ECS. In contrast, Prochlorococcus did not appear during winter and spring, and its distribution was limited during summer and autumn in the eastern seas under the influence of the Kuroshio current. The largest range of Prochlorococcus distribution was confirmed during autumn without the influence of the CDW. Thus, the distribution pattern of each picophytoplankton genus was found to be changing in accordance to the extension and reduction of sea current in different seasons and periods of time. This is anticipated to be a useful biological marker in understanding the distribution of sea currents and their influence in the northern waters of the ECS.

Characterization of quality changes of whole super sweet corn (Zea mays saccharata Sturt.) during thermal sterilization for shelf-stable products (상온유통을 위한 가열살균 중의 통 초당옥수수의 품질변화 연구)

  • Lee, Yun Ju;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This study investigated the quality changes in whole super sweet corn during thermal processing to extend its shelf-life. To minimize the reduction of unique texture of whole sweet corn after the sterilization, the alcohol sanitation applied and the cold point of a whole corn ear was determined using a computer simulation. The cold point was located between the corn kernel and the cob. The microorganisms on the surface of sweet corn were reduced by more than 1 log CFU/g after alcohol sanitation, then the whole corn was treated to satisfy the degree of sterilization ($F_{121.1}=4$). The quality of sterilized sweet corn was compared with the control that was treated with steaming. The quality changes of sterilized sweet corn during storage were monitored for 9 months at $25^{\circ}C$. The hardness was maintained within 30% of its initial value. The minimum of hardness was $464.50{\pm}103.35g$ and maximum of hardness was $514.50{\pm}81.83g$. The differences in the sugar content among the samples were found, but the sugar content of corn kernel remained within 30% of the control, ranging from $28.83{\pm}1.05$ to $34.36{\pm}0.42%$. The yellowness was higher than that of control by 5%. The maximum value of yellowness was $34.36{\pm}0.42$. The general bacteria and molds and yeasts in corn kernel stored at $25^{\circ}C$ were not detected after 9 months of storage at $25^{\circ}C$. Therefore, in this study, we have demonstrated that the thermal sterilized method extends the shelf-life of whole sweet corn with minimizing its quality changes over 6 months in room temperature.

Monitoring of Working Environment Exposed to Particulate Matter in Greenhouse for Cultivating Flower and Fruit (과수 및 화훼 시설하우스 내 작업자의 미세먼지 노출현황 모니터링)

  • Seo, Hyo-Jae;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • With the wide use of greenhouses, the working hours have been increasing inside the greenhouse for workers. In the closed ventilated greenhouse, the internal environment has less affected to external weather during making a suitable temperature for crop growth. Greenhouse workers are exposed to organic dust including soil dust, pollen, pesticide residues, microorganisms during tillage process, soil grading, fertilizing, and harvesting operations. Therefore, the health status and working environment exposed to workers should be considered inside the greenhouse. It is necessary to secure basic data on particulate matter (PM) concentrations in order to set up dust reduction and health safety plans. To understand the PM concentration of working environment in greenhouse, the PM concnentrations were monitored in the cut-rose and Hallabong greenhouses in terms of PM size, working type, and working period. Compare to no-work (move) period, a significant increase in PM concentration was found during tillage operation in Hallabong greenhouse by 4.94 times on TSP (total suspended particle), 2.71 times on PM-10 (particle size of 10 ㎛ or larger), and 1.53 times on PM-2.5, respectively. During pruning operation in cut-rose greenhouse, TSP concentration was 7.4 times higher and PM-10 concentration was 3.2 times higher than during no-work period. As a result of analysis of PM contribution ratio by particle sizes, it was shown that PM-10 constitute the largest percentage. There was a significant difference in the PM concentration between work and no-work periods, and the concentration of PM during work was significant higher (p < 0.001). It was found that workers were generally exposed to a high level of dust concentration from 2.5 ㎛ to 35.15 ㎛ during tillage operation.

Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem (WRF-Chem 모델을 활용한 동아시아의 인위적 배출량 변동에 따른 한국 미세 먼지 장거리 수송 기여도 분석)

  • Lee, Hyae-Jin;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.283-302
    • /
    • 2022
  • Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.

Evaluation of waterlogging tolerance using chlorophyll fluorescence reaction in the seedlings of Korean ginseng (Panax ginseng C. A. Meyer) accessions (엽록소 형광반응을 이용한 인삼 유전자원의 습해 스트레스 평가)

  • Jee, Moo Geun;Hong, Young Ki;Kim, Sun Ick;Park, Yong Chan;Lee, Ka Soon;Jang, Won Suk;Kwon, A Reum;Seong, Bong Jae;Kim, Me-Sun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.240-249
    • /
    • 2022
  • Measuring chlorophyll fluorescence (CF) is a useful tool for assessing a plant's ability to tolerate abiotic stresses such as drought, waterlogging and high temperature. Korean ginseng is highly sensitive to water stress in paddy fields. To evaluate the possibility of non-destructively diagnosing waterlogging stress using chlorophyll fluorescence (CF) imaging techniques, we screened 57 ginseng accessions for waterlogging tolerance. To evaluate waterlogging tolerance among the 2-year-old Korean ginseng accessions, we treated ginseng plants with water stress for 25 days. The physiological disorder rate was characterized through visual assessment (an assigned score of 0-5). The physiological disorder rates of Geumjin, Geumsun and GS00-58 were lower than that of other accessions. In contrast, lines GS97-62, GS97-69 and GS98-1-5 were deemed susceptible. Root traits, chlorophyll content and the reduction rates decreased in most ginseng accessions. Further, these metrics were significantly lower in susceptible genotypes compared to resistant ones. All CF parameters showed a positive or negative response to waterlogging stress, and this response continuously increased over the treatment time among the genotypes. The CF parameter Fv/Fm was used to screen the 57 accessions, and the results showed clear differences in Fv/Fm between the susceptible and resistant genotypes. Susceptible genotypes had an especially low Fv/Fm value of less than 0.8, reflecting damage to the reaction center of photosystem II. It is concluded that Fv/Fm can be used as a CF parameter index for screening waterlogging stress tolerance in ginseng genotypes.

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.

A comparative study of risk according to smoke control flow rate and methods in case of train fire at subway platform (지하철 승강장에서 열차 화재 시 제연풍량 및 방식에 따른 위험도 비교 연구)

  • Ryu, Ji-Oh;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.327-339
    • /
    • 2022
  • The purpose of this study is to present the effective smoke control flow rate and mode for securing safety through quantitative risk assessment according to the smoke control flow rate and mode (supply or exhaust) of the platform when a train fire occurs at the subway platform. To this end, a fire outbreak scenario was created using a side platform with a central staircase as a model and fire analysis was performed for each scenario to compare and analyze fire propagation characteristics and ASET, evacuation analysis was performed to predict the number of deaths. In addition, a fire accident rate (F)/number of deaths (N) diagram (F/N diagram) was prepared for each scenario to compare and evaluate the risk according to the smoke control flow rate and mode. In the ASET analysis of harmful factors, carbon monoxide, temperature, and visible distance determined by performance-oriented design methods and standards for firefighting facilities, the effect of visible distance is the largest, In the case where the delay in entering the platform of the fire train was not taken into account, the ASET was analyzed to be about 800 seconds when the air flow rate was 4 × 833 m3/min. The estimated number of deaths varies greatly depending on the location of the vehicle of fire train, In the case of a fire occurring in a vehicle adjacent to the stairs, it is shown that the increase is up to three times that of the vehicle in the lead. In addition, when the smoke control flow rate increases, the number of fatalities decreases, and the reduction rate of the air supply method rather than the exhaust method increases. When the supply flow rate is 4 × 833 m3/min, the expected number of deaths is reduced to 13% compared to the case where ventilation is not performed. As a result of the risk assessment, it is found that the current social risk assessment criteria are satisfied when smoke control is performed, and the number of deaths is the flow rate 4 × 833 m3/min when smoke control is performed at 29.9 people in 10,000 year, It was analyzed that it decreased to 4.36 people.

Effects of Dry Heat Treatment on the Reduction of Main Food-Borne Bacteria on Alfalfa Seeds (건열처리를 이용한 알팔파의 주요 식중독균 저감화)

  • Hong, Soon-Young;Kim, Su-jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.225-231
    • /
    • 2022
  • In this study, the conditions of dry heat treatment (21 days at 65℃, 16 days at 70℃, 10 days at 75℃, and 7 days at 80℃) were investigated to inactivate Bacillus cereus ATCC 12480, Listeria monocytogenes ATCC SSA81, Staphylococcus aureus ATCC 6538, Escherichia coli O157:H7 ATCC 43894, and Salmonella Typhimurium ATCC 14028 on alfalfa seeds, without affecting the rate of germination of seeds. Alfalfa seeds were inoculated at levels of 6-7 log CFU/g and treated with dry heat at 65℃, 70℃, 75℃, and 80℃; thereafter, the rate of seed germination was determined. The rate of germination was set at 70%, according to the market standards. The bacteria were inactivated when B. cereus was treated with dry heat for 21 days at 65℃, 18 days at 70℃, 14 days at 75℃, and 4 days at 80℃; L. monocytogenes was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 7 days at 80℃; S. aureus was treated for 18 days at 65℃, 18 days at 70℃, 11 days at 75℃, and 4 days at 80℃; E. coli O157:H7 was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 6 days at 80℃; and Sal. Typhimurium was treated for 24 days at 65℃, 22 days at 70℃, 14 days at 75℃, and 7 days at 80℃. For all bacteria, the D-value (R2 = 0.5656-0.7957) significantly decreased when the temperature increased from 65℃ to 80℃ (P<0.05). Since dry heat treatment of alfalfa seeds at 80℃ for 7 days affects their germination rate, dry heat treatment at 75℃ for 14 days is the most effective way to ensure their safety. This study suggests a potential method of bacterial inactivation using dry heat treatment to increase the microbiological safety of sprouts.

'OFF' Response and Its Characteristics of Guinea Pig Ureter (기니픽 요관(尿管)에 있어서 OFF Response 발생과 그 특징)

  • Hong, K.W.;Rhim, B.Y.;Peter Binancani;Weiss Robert M.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.1 s.26
    • /
    • pp.25-34
    • /
    • 1980
  • The in vitro guinea pig ureter responded to 5 sec trains of electrical stimuli with two contractions; the first an 'on response' (ON) occurred with $0.1{\sim}0.3$ sec after the onset o the stimulus train, the second an 'off response'(OFF) occurred $0.2{\sim}1.0$ sec after the termination of the stimulus train. Relaxation occurred between the two responses during a time when the stimulus was still being delivered. Longer duration and/or higher frequencies of stimuli within the train were required to elicit the OFF than the ON. Decreasing temperature from $37^{\circ}$ to $22^{\circ}$ decreased ON amplitude and increased OFF amplitude. $Ca^{++}$-free solution, 2 mM EDTA, 1 mM $Mn^{++}$ or $1{\mu}M$ verapamil rapidly abolished ON. OFF persisted when ON had disappeared by repeated stimulation at 0.12 train per sec. Conversely, caffeine, $50{\mu}M$ and theophylline, $10{\mu}M$ abolished OFF with only slight reduction of ON, and sodium nitroprusside decreased preferentially ON amplitude rather than OFF. Relaxation between ON and OFF was incomplete in low $Na^+$ solution. ON and OFF were not affected by the neural blockers tetrodotoxin, atropine or phentolamine, also pyrilamine and methysergide, and relaxation between ON and OFF was $Na^+$ dependent. Furthermore, ON depends on free $Ca^{++}$ and OFF is more dependent on bound or stored $Ca^{++}$.

  • PDF

The progress in NF3 destruction efficiencies of electrically heated scrubbers (전기가열방식 스크러버의 NF3 제거 효율)

  • Moon, Dong Min;Lee, Jin Bok;Lee, Jee-Yon;Kim, Dong Hyun;Lee, Suk Hyun;Lee, Myung Gyu;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.535-543
    • /
    • 2006
  • Being used widely in semiconductor and display manufacturing, $NF_3$ is internationally considered as one of the regulated compounds in emission. Numerous companies have been continuously trying to reduce the emissions of $NF_3$ to comply with the global environmental regulation. This work is made to report the destruction and removal efficiency (DRE) of electrically heated scrubbers and the use rate in process chambers installed in three main LCD manufacturing companies in Korea. As the measurement techniques for $NF_3$ emission, mass flow controlled helium gas was continuously supplied into the equipment by which scrubber efficiency is being measured. The partial pressures of $NF_3$ and helium were accurately measured for each sample using a mass spectrometer, as it is emitted from inlet and outlet of the scrubber system. The results show that the DRE value for electrically heated scrubbers installed before 2004 is less than 52 %, while that for the new scrubbers modified based on measurement by scrubber manufacturer has been sigificentely improved upto more than 95 %. In additon, we have confirmed the efficiency depends on such variables as the inlet gas flow rate, water content, heater temperature, and preventative management period. The use rates of $NF_3$ in process chambers were also affected by the process type. The use rate of radio frequency source chambers, built in the $1^{st}$ and $2^{nd}$ generation process lines, was determined to be less than 75 %. In addition, that of remote plasma source chambers for the $3^{rd}$ generation was measured to be aboove 95 %. Therefore, the combined application of improved scrubber and the RPSC process chamber to the semiconductor and display process can reduce $NF_3$ emmision by 99.95 %. It is optimistic that the mission for the reduction of greenhouse gas emission can be realized in these LCD manufacturing companies in Korea.