DOI QR코드

DOI QR Code

Distribution characteristics and community structure of picophytoplankton in the northern East China Sea in 2016-2017

2016~2017년 동중국해 북부해역의 초미소식물플랑크톤 분포 특성

  • Park, Kyung Woo (Oceanic Climate and Ecology Research Division, NIFS) ;
  • Yoo, Man Ho (Oceanic Climate and Ecology Research Division, NIFS) ;
  • Oh, Hyun Ju (Oceanic Climate and Ecology Research Division, NIFS) ;
  • Youn, Seok Hyun (Oceanic Climate and Ecology Research Division, NIFS) ;
  • Kwon, Kee Young (Research and Development Planning Division, NIFS) ;
  • Moon, Chang Ho (Department of Oceanography, Pukyung National University)
  • 박경우 (국립수산과학원 기후변화연구과) ;
  • 유만호 (국립수산과학원 기후변화연구과) ;
  • 오현주 (국립수산과학원 기후변화연구과) ;
  • 윤석현 (국립수산과학원 기후변화연구과) ;
  • 권기영 (국립수산과학원 연구기획과) ;
  • 문창호 (부경대학교 해양학과)
  • Received : 2019.03.06
  • Accepted : 2019.03.21
  • Published : 2019.03.31

Abstract

To investigate the temporal-spatial distribution of picophytoplankton in relation to different water masses in the northern East China Sea (ECS), picophytoplankton abundance were investigated using flow cytometry with environmental factors in 2016-2017. The results from the analysis of flow cytometer data showed that Synechococcus appeared across all seasons, exhibiting its minimum abundance in winter and maximum abundance in summer. Furthermore, high abundance was detected in the surface mixed layer during spring and summer when vertical stratification occurs; in particular, Synechococcus exhibited maximum abundance in thermocline layer, indicating a close correlation to water temperature and thermocline formation. In addition, the abundance of Synechococcus indicated a decrease in the western seas in 2017 compared to 2016 under the strong influence of the Changjiang Diluted Water (CDW). This was determined by the significant influence of the CDW on the abundance of Synechococcus during summer in the northern waters of the ECS. In contrast, Prochlorococcus did not appear during winter and spring, and its distribution was limited during summer and autumn in the eastern seas under the influence of the Kuroshio current. The largest range of Prochlorococcus distribution was confirmed during autumn without the influence of the CDW. Thus, the distribution pattern of each picophytoplankton genus was found to be changing in accordance to the extension and reduction of sea current in different seasons and periods of time. This is anticipated to be a useful biological marker in understanding the distribution of sea currents and their influence in the northern waters of the ECS.

Synechococcus 속은 전 계절에 출현하였으며, 저수온기에 현존량이 가장 낮았고, 고수온기에 서쪽해역에서 최대 현존량을 나타내었다. 동중국해 북부해역의 서쪽해역에서 Synechococcus 속은 2017년에 비해 장강희석수의 유입량이 많았던 2016년에 현존량이 높게 나타나 고수온과 장강희 석수를 통한 영양염 유입이 Synechococcus 속 성장에 밀접한 관계가 있음을 알 수 있었다. 또한 Synechococcus 속은 동중국해 북부해역의 서쪽해역과 동쪽해역에서 서로 다른 계통군이 존재함을 기존 연구에서도 알 수 있었다(Choi 2012). Picoeukaryotes은 계절적으로 춘계에 현존량이 가장 높았고, 조사시기 동안 Synechococcus 속에 비해서는 현존량이 낮았다. 그러나 picoeukaryotes은 Synechococcus와 Prochlorococcus 속보다 크기가 크고 생체량이 높기 때문에 동중국해 북부해역에서 일차생산자로써 중요한 역할을 할 것으로 판단된다. Prochlorococcus 속은 저수온기인 동계와 춘계에는 출현하지 않았으며, 하계와 추계에는 쿠로시오수의 영향을 받는 동쪽해역에서 제한적으로 분포하였고 수직적으로 유세포 분석기의 형광값 차이에 의해서 형광값이 낮았던 생태형 I과 형광값이 높았던 생태형 II로 구분되어 나타났다. 또한 Prochlorococcus 속은 쿠로시오수의 유입량이 많은 추계에 가장 넓은 범위에서 분포함에 따라 쿠로시오수의 유입량이 생장 및 분포 범위에 영향을 미치는 것으로 판단된다. 이와 같이 동중국해 북부해역에서 Synechococcus와 Prochlorococcus 속의 생장과 분포는 수괴의 영향에 따라 서로 다른 물리 화학적 환경에서 다양한 계통군이 출현하였다. 따라서 동중국해 북부해역의 수괴의 구조를 파악하는데 초미소식물플랑크톤이 유용한 생물학적 지표가 될 수 있으며, 동중국해의 환경 특성 및 이에 연동되는 생태계 특성을 파악하기 위한 유용한 정보를 제공하기 위해서는 분자생물학적 분석이 병행되어야 할 것으로 생각한다.

Keywords

References

  1. Agawin NSR, CM Duarte and S Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45:591-600. https://doi.org/10.4319/lo.2000.45.3.0591
  2. Ahlgren NA and G Rocap. 2006. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl. Environ. Microbiol. 72:7193-7204. https://doi.org/10.1128/AEM.00358-06
  3. Buck KR, FP Chavez and L Campbell. 1996. Basin-wide distributions of living carbon components and the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, summer 1993. Aquat. Microb. Ecol. 10:283-298. https://doi.org/10.3354/ame010283
  4. Burkill PH, RJG Leakey, NJP Owens and RFC Mantoura. 1993. Synechococcus and its importance to the microbial food web of the northwestern Indian Ocean. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 40:773-782. https://doi.org/10.1016/0967-0645(93)90057-T
  5. Campbell L and D Vault. 1993. Photosynthetic picoplankton community structure in the subtropical north Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res. Part I -Oceanogr. Res. Pap. 40:2043-2060. https://doi.org/10.1016/0967-0637(93)90044-4
  6. Campbell L, HA Nolla and D Vaulot. 1994. The importance of Pochlorococcus to community structure in the central North Pacific Ocean. Limnol. Oceanogr. 396:954-961. https://doi.org/10.4319/lo.1994.39.4.0954
  7. Chang J, KH Lin, KM Chen, GC Gong and KP Chiang. 2003. Synechococcus growth and mortality rates in the East China Sea: range of variations and correlation with environmental factors. Deep-Sea Res. Part II -Top. Stud. Oceanogr. 50:1265-1278. https://doi.org/10.1016/S0967-0645(03)00022-5
  8. Chen CTA. 2000. The Three Gorges Dam: Reducing the upwelling and thus productivity in the East China Sea. Geophys. Res. Lett. 27:381-383. https://doi.org/10.1029/1999GL002373
  9. Chen CTA. 2008. Distribution of nutrients in the East China Sea and the South China Sea connection. J. Oceanogr. 64:737-751. https://doi.org/10.1007/s10872-008-0062-9
  10. Chen CTA. 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. J. Mar. Syst. 78:394-410. https://doi.org/10.1016/j.jmarsys.2008.11.016
  11. Chiang KP, MC Kuo, J Chang, RH Wang and GC Gong. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Cont. Shelf Res. 22:3-13. https://doi.org/10.1016/S0278-4343(01)00067-X
  12. Chisholm SW, RJ Olson, ER Zetter, R Goerike, JB Waterburry and NA Welschmeyer. 1988. A novel free -living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340-343. https://doi.org/10.1038/334340a0
  13. Choi DH and JH Noh. 2009. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol. Ecol. 69:439-448. https://doi.org/10.1111/j.1574-6941.2009.00729.x
  14. Choi DH. 2012. Picocyanobacterial diversity and distribution during summer in the northern East China Sea. Ocean Polar Res. 34(1):19-28. https://doi.org/10.4217/OPR.2012.34.1.019
  15. Christaki U, S Jacquet, JR Dolan, D Vaulot and F Rassoulzadegan. 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. 44:52-61. https://doi.org/10.4319/lo.1999.44.1.0052
  16. Coleman ML and SW Chisholm. 2007. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15:398-407. https://doi.org/10.1016/j.tim.2007.07.001
  17. Fu FX, ME Warner, YH Zhang, YY Feng and DA Hutchins. 2007. Effects of increased temperature and $CO_2$ on photosynthesis, growth and elemental patios in marine Synechococcus and Prochlorococcus (Cyanobacteria) 1. J. Phycol. 43:485-496. https://doi.org/10.1111/j.1529-8817.2007.00355.x
  18. Fuller NJ, D Marie, F Partensky, D Vaulot, AF Post and DJ Scanlan. 2003. Clade -specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69:2430-2443. https://doi.org/10.1128/AEM.69.5.2430-2443.2003
  19. Gong GC, YI Chen and KK Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont. Shelf Res. 16:1561-1590. https://doi.org/10.1016/0278-4343(96)00005-2
  20. Grob C, O Ulloa, W Li, G Alarcon, M Fukasawa and S Watanabe. 2007. Picoplankton abundance and biomass across the eastern South Pacific Ocean along latitude 32.5$^{\circ}$S. Mar. Ecol. Prog. Ser. 332:53-62. https://doi.org/10.3354/meps332053
  21. Guo X, Y Miyazawa and T Yamagata. 2006. The Kuroshio onshore intrusion along the shelf break of the East China Sea: the origin of the Tsushima Warm Current. J. Phys. Oceanogr. 36:2205-2231. https://doi.org/10.1175/JPO2976.1
  22. Huang S, SW Wilhelm, HR Harvey, K Taylor, N Jiao and F Chen. 2012. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6:285-297. https://doi.org/10.1038/ismej.2011.106
  23. Hur HB, GA Jacobs and WJ Teague. 1999. Monthly variations of water masses in the Yellow and East China Seas, November 6, 1998. J Oceanogr. 55:171-184. https://doi.org/10.1023/A:1007885828278
  24. Isobe A. 2008. Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. J Oceanogr. 64:569-584. https://doi.org/10.1007/s10872-008-0048-7
  25. Iturriaga R and BG Mitchell. 1986. Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar. Ecol. Prog. Ser. 28:291-297. https://doi.org/10.3354/meps028291
  26. Jiao N, Y Yang, H Koshikawa and M Watanabe. 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquat. Microb. Ecol. 30:37-48. https://doi.org/10.3354/ame030037
  27. Jiao N, Y Yang, N Hong, Y Ma, S Harada, H Koshikawa and M Watanabe. 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Cont. Shelf Res. 25:1265-1279. https://doi.org/10.1016/j.csr.2005.01.002
  28. Johnson PW and JMN Sieburth. 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24:928-935. https://doi.org/10.4319/lo.1979.24.5.0928
  29. Kim KR, TS Rhee, K Kim and JY Chung. 1991. Chemical characteristics of the East Sea intermediate water in the Ulleung Basin. J. Oceanol. Soc. Korea 26:278-290.
  30. Landry MR, J Kirshtein and J Constantinou. 1996. Abundances and distributions of picoplankton populations in the central equatorial Pacific from 12$^{\circ}$N to 12$^{\circ}$S, 140$^{\circ}$W. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 43:871-890. https://doi.org/10.1016/0967-0645(96)00018-5
  31. Landry MR, SL Brown, J Neveux, C Dupouv, J Blanchot, S Christensen and RR Bidigare. 2003. Phytoplankton growth and microzooplankton grazing in high-nutrient, low-chlorophyll waters of the equatorial Pacific: Community and taxon-specific rate assessments from pigment and flow cytometric analyses. J. Geophys. Res.-Oceans 108:8142. https://doi.org/10.1029/2000JC000744
  32. Le F, X Ning, C Liu, Q Hao and J Shi. 2010. Community structure of picoplankton abundance and biomass in the southern Huanghai Sea during the spring and autumn of 2006. Acta Oceanol. Sin. 29:58-68.
  33. Lee YJ. 2012. Phytoplankton dynamics and primary production in the Yellow Sea during winter and summer. Ph.D. Thesis, Inha University. Incheon. p. 218.
  34. Lee YJ, JK Choi, SH Youn and SM Roh. 2014. Influence of the physical forcing of different water masses on the spatial and temporal distributions of picophytoplankton in the northern East China Sea. Cont. Shelf Res. 88:216-227. https://doi.org/10.1016/j.csr.2014.08.001
  35. Legendre L and F Rassoulzadegan. 1996. Food-web mediated export of biogenic carbon in oceans hydrodynamics control. Mar. Ecol. Prog. Ser. 145:179-193. https://doi.org/10.3354/meps145179
  36. Legendre L and J Le Fevre. 1995. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9:69-77. https://doi.org/10.3354/ame009069
  37. Legendre L and J Michaud. 1998. Flux of biogenic carbon in oceans: size-dependent regulation by pelagic food webs. Mar. Ecol. Prog. Ser. 164:1-11. https://doi.org/10.3354/meps164001
  38. Li WKW, DVS Rao, WG Harrison, JC Smith, JJ Cullen, B Irwin and T Platt. 1983. Autotrophic picoplankton in the tropical ocean. Science 219:292-295. https://doi.org/10.1126/science.219.4582.292
  39. Lindell D and AF Post. 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40:1130-1141. https://doi.org/10.4319/lo.1995.40.6.1130
  40. Liu H, K Suzuki and H Saito. 2004. Community structure and dynamics of phytoplankton in the western subarctic Pacific Ocean: A synthesis. J. Oceanogr. 60:119-137. https://doi.org/10.1023/B:JOCE.0000038322.79644.36
  41. Longhurst AR. 1991. Role of the marine biosphere in the global carbon cycle. Limnol. Oceanogr. 36:1507-1526. https://doi.org/10.4319/lo.1991.36.8.1507
  42. MLTMA. 2009. The study of oceanographic environmental impact in the South Sea (East China Sea) due to the Three Gorges Dam. Ministry of Land, Transport and Maritime Affairs, Korea. pp. 7-175.
  43. Moore LR and SW Chisholm. 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol. Oceanogr. 44:628-638. https://doi.org/10.4319/lo.1999.44.3.0628
  44. Moore LR, AF Post, G Rocap and SW Chisholm. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 49:989-996.
  45. Moore LR, G Rocap and SW Chisholm. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464-467. https://doi.org/10.1038/30965
  46. Moore LR, R Goericke and SW Chisholm. 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116:259-275. https://doi.org/10.3354/meps116259
  47. Murphy LS and EM Hagen. 1985. The distribution and abundance of phototrophic picoplankton in the North Atlantic. Limnol. Oceanogr. 30:47-58. https://doi.org/10.4319/lo.1985.30.1.0047
  48. Noh JH and JK Choi. 2001. Contribution of picoplankton to size-fractionated primary productivity and characteristics of photosynthesis parameters in the East China Sea and the southern Yellow Sea. p. 53. In Proceedings of the spring meeting, 2001 of the Korean society of oceanography. Busan, Korea.
  49. Noh JH, SJ Yoo and SH Kang. 2006. The summer distribution of picophyoplankton in the western Pacific. Korean J. Environ. Biol. 24:67-80.
  50. Noh JH, SJ Yoo, JA Lee, HC Kim and JH Lee. 2005. Phytoplankton in the waters of the leodo ocean research station determined by microscopy, flow cytometry, HPLC pigment data and remote sensing. Ocean Polar Res. 27:397-417. https://doi.org/10.4217/OPR.2005.27.4.397
  51. Noh JH, SJ Yoo, MJ Lee, SK Son and WS Kim. 2004. A flow cytometric study of autotrophic picoplankton in the Tropical Eastern Pacific. Ocean Polar Res. 26:273-286. https://doi.org/10.4217/OPR.2004.26.2.273
  52. Nona S, R Agawin, CM Duarte and S Agusti. 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170:45-53. https://doi.org/10.3354/meps170045
  53. Olson RJ, SW Chisholm, ER Zettler, MA Altabet and EV Armbrust. 1988. Analysis of Synechococcus pigment types in the sea during single and dual beam flow cytometry. Deep-Sea Res. Part A-Oceanogr. Res. Pap. 35:425-440. https://doi.org/10.1016/0198-0149(88)90019-2
  54. Olson RJ, SW Chisholm, ER Zettler, MA Altabet and JA Dusenberry. 1990a. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep-Sea Res. Part A-Oceanogr. Res. Pap. 37:1033-1051. https://doi.org/10.1016/0198-0149(90)90109-9
  55. Olson RJ, SW Chisholm, ER Zettler, MA Altabet and JA Dusenberry. 1990b. Pigment, size and distribution of Synechococcus in the North Atlantic and Pacific Ocean. Limnol. Oceanogr. 35:45-58. https://doi.org/10.4319/lo.1990.35.1.0045
  56. Pan LA, LH Zhang, J Zhang, MG Josep and M Chao. 2005. Onboard flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microbiol. Ecol. 52:243-253. https://doi.org/10.1016/j.femsec.2004.11.019
  57. Parsons RR, M Takahashi and B Hargrave. 1984. Biological Oceanographic Process, 3rd ed. Pergamon Press. pp. 143-157.
  58. Partensky F, J Blanchot and D Vaulot. 1999a. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin-Institut Oceanographique Monaco-Numero Special. pp. 457-476.
  59. Partensky F, WR Hess and D Vaulot. 1999b. Prochlorococcus a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Bio. Rev. 63:106-127. https://doi.org/10.1128/MMBR.63.1.106-127.1999
  60. Penno S, D Lindell and AF Post. 2006. Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA. Environ. Microbiol. 8:1200-1211. https://doi.org/10.1111/j.1462-2920.2006.01010.x
  61. Pile AJ, MR Patterson and JD Witman. 1996. In situ grazing on plankton <10 ${\mu}$m by the boreal sponge Mycale lingua. Mar. Ecol. Prog. Ser. 141:95-102. https://doi.org/10.3354/meps141095
  62. Platt T, V Subba-Rao and B Irwin. 1983. Photosyntesis of picoplankton in the oligotrophic ocean. Nature 301:702-704. https://doi.org/10.1038/301702a0
  63. Reckermann M and MJW Veldhuis. 1997. Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon. Aquat. Microb. Ecol. 12:263-273. https://doi.org/10.3354/ame012263
  64. Rocap G, DL Distel, JB Waterbury, SW Chisholm. 2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68:1180-1191. https://doi.org/10.1128/AEM.68.3.1180-1191.2002
  65. Rocap G, FW Larimer, J Lamerdin, S Malfatti, P Chain, NA Ahlgren, A Arellano, M Coleman, L Hauser, WR Hess, ZI Johnson, M Land, D Lindell, AF Post, W Regala, M Shah, SL Shaw, C Steglich, MB Sullivan, CS Ting, A Tolonen, EA Webb, ER Zinser and SW Chisholm. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042-1047. https://doi.org/10.1038/nature01947
  66. Scanlan DJ and NJ West. 2002. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol. 40:1-12. https://doi.org/10.1111/j.1574-6941.2002.tb00930.x
  67. Tarran GA, MV Zubkov, MA Sleigh, PH Burkill and M Tallop. 2001. Microbial community structure and standing stocks in the NE Atlantic in June and July of 1996. Deep-Sea Res. Part IITop. Stud. Oceanogr. 48:963-985. https://doi.org/10.1016/S0967-0645(00)00104-1
  68. Vanucci S and O Mangoni. 1999. Pico and nanophytoplankton assemblages in a subantarctic ecosystem in the Strait of Magellan. Bot. Marina 42:563-572. https://doi.org/10.1515/BOT.1999.063
  69. Vaulot D and X Ning. 1988. Abundance and cellular characteristics of marine Synechococcus spp. in the dilution zone of the Changjiang (Yangtze River, China). Cont. Shelf Res. 8:1171-1186. https://doi.org/10.1016/0278-4343(88)90018-0
  70. Vaulot D, F Partensky, J Neveus, RFC Mantoura and C Llewellyn. 1990. Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol. Oceanogr. 35:1156-1164. https://doi.org/10.4319/lo.1990.35.5.1156
  71. Vaulot D, N LeBot, D Marie and E Fukai. 1996. Effect of phosphorus on the Synechococcus cell cycle in surface Mediterranean waters during summer. Appl. Environ. Microbiol. 62:2527-2533. https://doi.org/10.1128/AEM.62.7.2527-2533.1996
  72. Waterbury JB, SW Watson, RRL Guillard and LE Brand. 1979. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293-294. https://doi.org/10.1038/277293a0
  73. Worden AZ, JK Nolan and B Palenik. 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 49:168-179. https://doi.org/10.4319/lo.2004.49.1.0168
  74. Yanagi T. 2002. Water, salt, phosphorus and nitrogen budgets of the Japan Sea. J. Oceanogr. 58:797-804. https://doi.org/10.1023/A:1022815027968
  75. Yeh SW, JS Kug, B Dewitte, MH Kwon, BP Kirtman and FF Jin. 2009. El Niño in a changing climate. Nature 461:511-514. https://doi.org/10.1038/nature08316
  76. Zinser ER, A Coe, ZI Johnson, AC Martiny, NJ Fuller, DJ Scanlan and SW Chisholm. 2006. Prochlorococcus ecotype abundances in the North Atlantic Ocean As revealed by an improved quantitative PCR method. Appl. Environ. Microbiol. 72:723-732. https://doi.org/10.1128/AEM.72.1.723-732.2006