• 제목/요약/키워드: Temperature Monitoring

검색결과 2,276건 처리시간 0.038초

크레인 안전 운전을 위한 모니터링 시스템 개발 (Development of Monitoring System for Safety Operation of Crane)

  • 배영철
    • 한국전자통신학회논문지
    • /
    • 제9권11호
    • /
    • pp.1305-1310
    • /
    • 2014
  • 본 논문에서는 현존하는 크레인 모니터링 시스템의 문제점을 보완한 새로운 크레인 통합 모니터링 시스템 구현한다. 구현하는 모니터링 시스템은 무선 네트워크를 기본으로 주 차단기의 전체 부하전류를 측정하기 위한 시스템, 주 감속기의 오일 및 베어링 감시를 위한 온도와 진동 측정 시스템, 주권 모터 베어링의 온도 측정 시스템, 또한 전기실 전체의 화재 감시를 위한 센서 등을 갖추고 여기에서 측정한 데이터를 중앙의 감시실로 전송하여 진단을 수행하는 통합 모니터링 시스템을 구현하고 성능시험을 수행한다.

댐 침투수 탐지를 위한 멀티 채널 온도 모니터링 연구 (A Study on multi-channel temperature monitoring for the detection of leakage or seepage in dam body)

  • 오석훈;김중열;박한규;김형수;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1211-1218
    • /
    • 2005
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

초전도 모터의 상태진단을 위한 데이터 신호 무선처리 기법개발 (Development of the Wireless Technique for Health Monitoring of Superconducting Motor)

  • 서경철;이민래;이준현;권영길;손명환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.829-834
    • /
    • 2004
  • This research is to development advanced health(condition) monitoring system of superconducting motors. Development of advanced condition monitoring systems offers the prospect of improved performance, assessment, and operation, simplified design, enhanced safety, and reduced overall cost of advanced and next generation superconducting motor. For advanced and next generation superconducting motor design, the opportunity exists to develop and implement real-time and continuous monitoring systems by integrating wireless and computational technique. Generally, condition monitoring and control of temperature is essential for managing the superconducting motor components, rotor and structures. In this research, development of advanced monitoring in low temperature and high speed operating environments offers the potential to greatly improve the control of harsh environments. In conventional method, slip rings have been used to acquire data from these sensors. However, the increase of sensors leads to vibration of the rotation axis and noise signals due to kinematics contact. In this study, the wireless data acquisition technique was employed to develop more stable monitoring system adequate for high speed rotating system.

  • PDF

저수지 전기비저항 모니터링에서의 온도효과 (Temperature Effects in the Resistivity Monitoring at Embankment Dams)

  • 김은미;조인기;김기석;용환호
    • 지구물리와물리탐사
    • /
    • 제21권2호
    • /
    • pp.82-93
    • /
    • 2018
  • 저수지 안전진단을 위하여 수행되는 전기비저항 모니터링 자료는 대기의 온도에 영향을 받는다. 특히 국내와 같이 사계절의 온도 변화가 큰 환경에서는 지중온도 변화에 의한 전기비저항의 변화를 무시하기 어렵다. 따라서 온도효과는 전기비저항 모니터링 자료의 정밀한 해석을 어렵게 한다. 이 연구에서는 저수지에서 획득된 다점온도 모니터링 자료를 분석하여 시공간적 지중온도를 추정하고, 이를 이용하여 역산 결과 얻어진 지하 전기비저항 모델에 대하여 온도보정을 수행하였다. 온도보정 결과, 계절변화에 의한 온도 효과는 주로 상부에 국한되며, 심부에서는 무시할 수 있는 것으로 해석되었다. 그러나 댐 제체의 온도 분포만을 가지고 온도 보정을 수행하면 그 효과를 완전히 제거할 수 없다. 이 문제를 극복하기 위해, 저수지 물의 온도 변화에 의한 효과는 대기온도 변화도 함께 포함되어야 할 것으로 보인다.

Remote Monitoring System for Cold-Storage Using Serial Communication

  • Lim, Dae-Young;Ryoo, Young-Jae;Gwark, Jae-Young;Chang, Young-Hak;Moon, Chae-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1359-1361
    • /
    • 2003
  • This paper describes a remote monitoring system of temperature control for cold-storage of farm produce. In cold-storage, it is important that farm produces are stored as fresh. Unfortunately, when an operator goes out from the cold-storage, the temperature could be changed due to the various reasons, for an example, a valve of cooler is broken. The temperature change results in a serious problem of the quality of farm produce. To prevent the problem, the operator has to look to the current state of the temperature of the cold-storage, even he is in long away. Thus, the monitoring system to show the temperature is required to the operator who can move away. Therefore, this paper describes the remote monitoring system of the temperature. The proposed system is expected to help the operator's facilities, and the management of farm produce.

  • PDF

무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향 (Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node)

  • 홍동수;김정태
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.

PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법 (Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment)

  • 왕현철;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.

Development of an environment field monitoring system to measure crop growth

  • Kim, Yeon-Soo;Kim, Du-Han;Chung, Sun-Ok;Choi, Chang-Hyun;Choi, Tae-Hyun;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.57-65
    • /
    • 2019
  • The purpose of this study was to develop an environment field monitoring system to measure crop growth. The environment field monitoring system consisted of sensors, a data acquisition system, and GPS. The sensors used in the environment field monitoring system consisted of an ambient sensor, a soil sensor, and an intensity sensor. The temperature and humidity of the atmosphere were measured with the ambient sensor. The temperature, humidity, and EC of the soil were measured with the soil sensor. The data acquisition system was developed using the Arduino controller. The field monitoring data were collected before a rainy day, on a rainy day, and after the rainy day. The measured data using the environment field monitoring system were compared with the Daejeon regional meteorological office data. The correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office was analyzed for performance evaluation. The correlation of the temperature and humidity of the atmosphere was analyzed because the Daejeon regional meteorological office only provided data for the temperature and humidity of the atmosphere. The correlation coefficients were 0.86 and 0.90, respectively. The result showed a good correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office. Therefore, the developed system could be applied to monitoring the field environment of agricultural crops.

Development of Long-Term Storage Technology for Chinese Cabbage - Physiological Characteristics of Postharvest Freshness in a Cooler with a Monitoring and Control Interface

  • Lim, Ki Taek;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.194-204
    • /
    • 2014
  • Purpose: The aim of this study was to develop long-term storage technology for Chinese cabbage in order to extend the period of availability of freshly harvested products. The scope of the paper deals with the use of a cooler with a remote monitoring and control interface in conjunction with use of packaging film. Methods: A cooler with a real time monitoring system was designed as a low-temperature storage facility to control temperature and relative humidity (RH). The effects of storage in high-density polyethylene (HDPE) plastic boxes, 3% chitosan dipping solution, polypropylene film (PEF) with perforations, and mesh packaging bags on physiological responses were investigated. The optimal storage temperature and humidity for 120 days were below $0.5^{\circ}C$ and 90%, respectively. Physiological and biochemical features of cabbage quality were also analyzed: weight loss, texture, and sugar salinity, chlorophyll, reducing sugar, and vitamin C contents. Results: The cooler with a remote monitoring and control interface could be operated by an HMI program. A $0.5^{\circ}C$ temperature and 90% humidity could be remotely controlled within the cooler for 120 days. Postharvest freshness of Chinese cabbages could be maintained up to 120 days depending on the packaging method and operation of the remote monitoring system. In particular, wrapping the cabbages in PEF with perforations resulted in a less than a 5% deterioration in quality. This study provides evidence for efficient performance of plastic films in minimizing post-harvest deterioration and maintaining overall quality of cabbages stored under precise low-temperature conditions with remote monitoring and a control interface. Conclusions: Packaging with a modified plastic film and storage in a precisely controlled cooler with a remote monitoring and control interface could slow down the physiological factors that cause adverse quality changes and thereby increase the shelf life of Chinese cabbage.

온도센서 배열 모니터링에 의한 매질의 투수성 및 절리 연결성 연구 (A Study on the medium seepage and the fracture connectivity by using temperature monitoring with thremal line sensors)

  • 김중열;김태희;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1110-1119
    • /
    • 2006
  • If water flows through a narrow passage into a medium that keeps the equilibrium of temperature, it causes small temperature difference and makes a temperature anomaly. The seepage or leakage often observed at old dams is a representative example of bringing about a temperature anomaly. Therefore, temperature measurements have been regarded as one of excellent methods that can detect the situation of seepage or leakage. However, because existing temperature measurement methods are based on a single sensor, the application of the method to the whole structure is nearly not possible in technical and economical phases. This paper introduces a temperature monitoring system using a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel at many positions within a single cable. Through various laboratory and field experiments, it has been proved that the temperature monitoring technique can give an useful information about permeability of a medium or connectivity of fractures which have been regarded as difficult problems.

  • PDF