Browse > Article
http://dx.doi.org/10.7582/GGE.2018.21.2.082

Temperature Effects in the Resistivity Monitoring at Embankment Dams  

Kim, Eun-Mi (Division of Geology and Geophysics, Kangwon National University)
Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University)
Kim, Ki-Seog (Heesong Geotek Co., Ltd.)
Yong, Hwan-Ho (Korea Rural Community Corporation)
Publication Information
Geophysics and Geophysical Exploration / v.21, no.2, 2018 , pp. 82-93 More about this Journal
Abstract
Resistivity monitoring data at embankment dams are affected by the seasonal temperature variation. Especially when the seasonal temperature variation is large like Korea, the temperature effects may not be ignored in the longterm resistivity monitoring. Therefore, temperature effects can make it difficult to accurately interpret the resistivity monitoring data. In this study, through analyzing the time series of ground temperature collected at an embankment dam, ground temperature variations are calculated approximately. Then, based on the calculated temperature profile with depth, the inverted resistivity model of the embankment dam is corrected to remove the temperature effects. From these corrections, it was confirmed that the temperature effects are significant in the upper, superficial part of the dam, but can be ignored at depth. However, temperature correction based only on the temperature distribution in the dam body cannot remove the temperature effect thoroughly. To overcome this problem, the effect of temperature variation in the reservoir water seems to be incorporated together with the air temperature variation.
Keywords
Resistivity monitoring; temperature effects; embankment dam;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cho, I. K., Kang, H. J., Lee, B. H., Kim, B. H., Yi, S. S., Park, Y. G., and Lee, B. H., 2006b, Safety index evaluation from resistivity monitoring data for reservoir dyke, Geophys. and Geophys. Explor., 9, 155-162 (in Korean with English abstract).
2 Cho, I. K., and Yeom, J. Y., 2007, Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam, Geophysics, 72, G31-G38.   DOI
3 Cho, I. K., Ha, I. S., Kim, K. S., Ahn, H. Y., Lee, S. H., and Kang, H. J., 2014, 3D effects on 2D resistivity monitoring in earth-fill dam, Near Surf. Geophys., 12, 73-81.
4 Cho, I. K., Kim, E. M., Jeong, D. B., Kim, K. S., and Yong, H. H., 2017, Time-lapse inversion of resistivity monitoring data at embankment dams, 2017 Fall joint conference of KSMER, KSRM, KSEG, Busan, Korea, 42p.
5 Chung, S. H., Kim, J. H., Yang, J. M., Han, K. E., and Kim, Y. W., 1992, Delineation of water seepage in earth-fill embankments by electrical resistivity method, J. Eng. Geol., 2, 47-57 (in Korean with English abstract).
6 Daily, W., Ramirez, A., Binley, A., and LaBrecque, D., 2004, Electrical resistance tomography, Lead Edge, 23, 438-442.   DOI
7 Day-Lewis, F. D., Harris, J. M., and Gorelick, S. M., 2002, Time-lapse inversion of crosswell radar data, Geophysics, 66, 1740-1752.
8 Deiana, R., Cassiani, G., Kemna, A., Villa, A., Bruno, V., and Bagliani, A., 2007, An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring, Near Surf. Geophys., 5, 183-194.
9 Johansson, S., and Dahlin, T., 1996, Seepage monitoring in an earth embankment dam by repeated resistivity measurements, European J. Environ. Eng. Geophy., 1, 229-247.   DOI
10 Hermans, T., Vandenbohede, A., Lebbe, L., and Nguyen, F., 2012, A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography, Geophysics, 77, B11-B21.   DOI
11 Hayashi, M., 2004. Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion, Environ. Monit. Assess., 96, 119-128.   DOI
12 Hayley, K., Bentley, L. R., Gharibi, M., and Nightingale, M., 2007, Low temperature monitoring dependence of electrical resistivity: Implications for near surface, geophysical monitoring, Geophys. Res. Lett., 34, L18402.   DOI
13 Hayley, K., Bentley, L. R., and Pidlisecky, A., 2010, Compensating for temperature variations in time-lapse electrical resistivity difference imaging, Geophysics, 75, WA51-WA59.   DOI
14 Karaoulis, M., Kim, J. H., and Tsourlos, P. I., 2011, 4D active time constrained inversion, J. Appl. Geophy., 73, 25-34.   DOI
15 Karaoulis, M., Tsourlos, P. I., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints, Near Surf. Geophys., 12, 25-34.
16 Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H., 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125-146.   DOI
17 Kim, J. H., Supper, R., Ottowitz, D., Jochum, B., and Yi, M. J., 2016, Processing of ERT monitoring data and evaluation of their reliabilities, Near Surf. Geoscience 2016 - 22nd European Mtg. Environ. Eng. Geoph., Expanded Abstracts.
18 Cassiani, G., Bruno, V., Villa, A., Fusi, N. and Binley, A. M., 2006, A saline trace test monitored via time-lapse surface electrical resistivity tomograph, J. Appl. Geophy., 59, 244-259.   DOI
19 Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Fourdimensional inversion of resistivity monitoring data through Lp norm minimizations, Geophys. J. Int., 195, 1640-1656.   DOI
20 Butler, D. K. and Llopis, J. L., 1990, Assessment of anomalous seepage conditions, in Ward, S. H. Ed., Geotechnical and Environmental Geophysics II, SEG.
21 Cho, I. K., Kang, H. J., and Kim, K. J., 2006a, Distortion of resistivity data due to the 3D geometry of embankment dams, Geophys. and Geophys. Explor., 9, 291-298 (in Korean with English abstract).
22 Oh, S. H., and Kim, H. S., 2005, Analysis of distortion effect of resistivity data due to 3D geometry of fill dam, 2005 spring Mtg. KSEG., Extended Abstracts, 55-58 (in Korean with English abstract).
23 Kim, K. J., and Cho, I. K., 2011, Time-lapse inversion of 2D resistivity monitoring data with soatially varying cross-model constraint, J. Appl. Geophy., 72, 114-122.
24 LaBrecque, D. J., and Yang, X., 2001. Difference inversion of ERT data, A fast inversion method for 3-D in-situ monitoring, J. Environ. Eng. Geophy., 6, 83-89.   DOI
25 Loke, M. H., 1999. Time-lapse resistivity imaging inversion, 5th Mtg. Environ. Eng. European Section, Em1.
26 Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization, Geophysics, 73, G7-G17.   DOI
27 Ogilvy, A. A., Ayed, M. A., and Bogoslovsky, V. A., 1969, Geophysical studies of water leakages from reservoirs, Geophys. Prospect., 17, 36-63.   DOI
28 Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer, Geophysics, 72, F177-F188.   DOI
29 Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophys. and Geophys. Explor., 8, 177-183 (in Korean with English abstract).
30 Park, S. G., Song, S. H., Choi, J. H., Choi, B. G., and Lee, B. H., 2002, Applicability of geophysical prospecting for water leakage detection in water utilization facilities, The 4th special symposium of KSEG, 179-195.
31 Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model, J. Appl. Geophy., 68, 522-532.   DOI
32 Sen, P. N., and Goode, P. A., 1992, Influence of temperature on electrical conductivity on shaly sands, Geophysics, 57, 89-96.   DOI
33 Rein, A., Hoffmann, R., and Dietrich, P., 2004, Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements, J. Hydrol., 285, 215-232.   DOI
34 Revil, A., Cathles III, L. M., Losh, S., and Nunn, J. A., 1998, Electrical conductivity in shaly sands with geophysical applications, J. Geophys. Res., 103, 23,925-23,936.   DOI
35 Salmon, G. M., and Johansson, S., 2003, Research on geophysical methods of detecting seepage and piping in embankment dams with case studies of geophysical measurements at two Swedish Tailings dams, ICOLD 71st Ann. Internat. Mtg. on Major Challenge in Tailing dams, June 15, Montreal 2003.
36 Singha, K., and Gorelick, S. M., 2005, Saline tracer visualized with three-dimensional electrical resistivity tomography: Field- scale spatial moment analysis, Water Resour. Res., 41, W05023.
37 Sjödahl, P., Dahlin, T., Zhou, B., and Johannson, S., 2002, Monitoring of leakage in embankment dams through resistivity measurements - A 2.5D modeling study, 8th Environ. Eng. Geophy., 169-172.
38 Sjodahl, P., Dahlin, T., and Zhou, B., 2006, 2.5D resistivity modeling of embankment dams to assess influence from geometry and material properties, Geophysics, 71, 107-114.
39 Slater, L., Binley, A., Cassiani, G., Birken, R., and Sandberg, S., 2002, A 3D study solute transport in a large experimental tank, J. Appl. Geophy., 49, 211-229.   DOI
40 Song, S. H., Kwon, B. D., Choi, J. H., and Kim, K. M., 2001, Application of hydrogeological and geophysical methods to leakage problem of dike, J. Korea Inst. Mineral Mining Eng., 38, 292-300.
41 Yoon, J. R., Kim, J. M., and Choi, B. H., 2005, Assessment of levee safety using electrical surveys, Geophysics, 8, 53-61 (in Korean with English abstract).
42 Song, S. H., Song, Y. H., and Kwon, B. D., 2005, Application of hydro-geological and geophysical methods to delineate leakage pathways in an earth fill dam, Explor. Geophys., 58, 92-96.
43 Titov, K., Loukhmanov, V., and Potapov, A., 2000, Monitoring of water seepage from a reservoir using resistivity and self polarization methods: case history of the Petergoph fountain water supply system, First Break, 18, 431-435.   DOI