• Title/Summary/Keyword: Temperature Increase

Search Result 11,475, Processing Time 0.034 seconds

Nonlinear optical behavior of binary mixture protein and water near the phase separation temperature (상분리 온도 근방에서 섞임체 단백질-물의 비선형 광학적 특성)

  • 조창호;김태균;서영석
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.461-465
    • /
    • 1997
  • The 3rd order nonlinear optical susceptibility was measured through the self-induced ellipse rotation. The phase separation temperature increases with the increase of salt and it decreases with the increase of glycerol.

  • PDF

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

An Experimental Study on the Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상조건하에서 핀-관 열교환기 성능에 관한 실험적 연구)

  • Lee, K.S.;Pak, H.Y.;Lee, T.H.;Lee, N.G.;Lee, S.Y.;Lee, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.319-328
    • /
    • 1995
  • In this study, the experiment with 2rows-2columns fin-tube heat exchanger under forced convection and frosting condition is performed. The influence of each operating condition(the temperature of air, the humidity of air, the velocity of air, the temperature of coolant) on the growth of frost layer, air-side pressure drop, and characteristics of heat transfer is investigated. The experimental results show that the frost thickness increases rapidly in the early stage of frost formation and increases linearly after sometime. The frost thickness increases with the increase of the inlet air humidity and velocity and the decrease of inlet air temperature and coolant temperature. It is also found that the total energy transfer rate increases with the increase of inlet air temperature and velocity and with the decrease of inlet air humidity and coolant temperature.

  • PDF

Effect of Storage Temperature and Humidity on the Quality Stability of Potatoes (감자의 품질안정성에 대한 저장 온.습도의 영향)

  • 권중호;변명우
    • Food Science and Preservation
    • /
    • v.2 no.2
    • /
    • pp.243-249
    • /
    • 1995
  • Potatoes, Irish cobbler, were subject to quality evaluation from the physiological and physicochemical points of view during storage under different temperatures and relative humidities for 11 months. Quality criteria were sprouting, rotting, weight changes, moisture, total sugar, reducing sugar and vitamin C. Low temperature condition(LT, 2∼4$^{\circ}C$, 80% RH) was enough to preserve Potatoes for 11 months, but it was indicated to be limitations that the increase in reducig sugar as well as sprouting by about 3.3 to 6.7% occurred from the 3rd month of storage. Meanwhile, pit temperature(PT, 3∼15$^{\circ}C$, 75∼85% RH), room temperature(RT, 7∼17$^{\circ}C$, 80∼95% RH) and ambient temperature(AT, 2∼25$^{\circ}C$, 62∼72 RH) were shown infeasible conditions for the storage of potatoes mainly due to the increase In sprouting-rate and subsequent quality-loss after 3 months of storage. Based on the results, it proposed that more economical conditions, ranging 10 to 15$^{\circ}C$ and about 80% RH following sprout inhibition treatment should be used for the long-term storage of potatoes.

  • PDF

Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control (2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어)

  • YUAN, WEIWEI;CHOI, MIHWA;YANG, SEUGRAN;KIM, YOUNG-BAE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy (Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계)

  • Yoon, D.H.;Jung, J.E.;Chang, Y.W.;Lee, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

Electrocaloric Effect of (Bi0.5Na0.5)TiO3 Ceramics ((Bi0.5Na0.5)TiO3 세라믹스의 유전 및 전기열량 특성)

  • Han, Jong-Dae;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.284-287
    • /
    • 2017
  • The electrocaloric effect in $0.94(Bi_{0.5}Na_{0.5})TiO_3+0.06KNbO3+0.9wt%$ G.F.ferroelectricceramics was observed in terms of the temperature change (${\Delta}T$) of the fabricated ceramics, Curie temperature $T_c$, and applied electric field. The specimens were fabricated by a conventional solid-state reaction. $T_c$ appeared near $165{\sim}170^{\circ}C$. The P-E hysteresis showed a tendency to slim down with a temperature increase and finally was slimmest near $150^{\circ}C$. With the increase of temperature, the polarization revealed a gradual decrease, and a sharp decline near $T_c$. When an electric field of 45 kV/cm was applied, the largest polarization was shown. The maximum value of the temperature change (${\Delta}T=0.31^{\circ}C$) was obtained at $165^{\circ}C$ under an applied electric field of 45 kV/cm.

Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature (HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도)

  • Yang, Young-Myung;Kim, Ho-Yeon
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF

The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel (P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향)

  • 김수영;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

Elasto-plastic thermal stress analysis of functionally graded hyperbolic discs

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.587-593
    • /
    • 2017
  • The objective of this analytical study is to calculate the elasto-plastic stresses of Functionally Graded (FG) hyperbolic disc subjected to uniform temperature. The material properties (elastic modulus, thermal expansion coefficient and yield strength) and the geometry (thickness) of the disc are assumed to vary radially with a power law function, but Poisson's ratio does not vary. FG disc material is assumed to be non-work hardening. Radial and tangential stresses are obtained for various thickness profile, temperature and material properties. The results indicate that thickness profile and volume fractions of constituent materials play very important role on the thermal stresses of the FG hyperbolic discs. It is seen that thermal stresses in a disc with variable thickness are lower than those with constant thickness at the same temperature. As a result of this, variations in the thickness profile increase the operation temperature. Moreover, thickness variation in the discs provides a significant weight reduction. A disc with lower rigidity at the inner surface according to the outer surface should be selected to obtain almost homogenous stress distribution and to increase resistance to temperature. So, discs, which have more rigid region at the outer surface, are more useful in terms of resistance to temperature.