DOI QR코드

DOI QR Code

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy

Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계

  • 윤동현 (재료연구소 융합공정연구본부) ;
  • 정중은 (POSTECH 신소재공학과) ;
  • 장영원 (POSTECH 신소재공학과) ;
  • 이정환 (재료연구소 산업기술지원본부) ;
  • 이광석 (재료연구소 융합공정연구본부)
  • Received : 2011.12.09
  • Accepted : 2012.02.07
  • Published : 2012.06.01

Abstract

High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

Keywords

References

  1. G. W. Liu, F. Valenza, M. L. Muolo, A. Passerone, 2010, SiC/SiC and SiC/Kovar Joining by Ni-Si and Mo Interlayers, J. Mater. Sci., Vol. 45, No. 16, pp. 4299-4307. https://doi.org/10.1007/s10853-010-4337-3
  2. H.W. Carpenter, 1976, Alloy 903 Helps Space Shuttle Ply., Met. Prog., Vol. 110, No. 3, pp. 25-29.
  3. S. Wang, J. Guo, W. Lai, Y. Ge, M. Tan, H. Li, 1991, Microstructure and Mechanical Properties of Fe-Ni-Co-based Superalloy after Longterm aging at $650^{\circ}C$, Acta Metall. Sinica, Vol. 4, No. 3, pp. 194-198.
  4. K. A. Lee, J. H. Park, B. H. Cho, J. Namgung, 2003, Hot Deformation and Thermal Expansion Behavior of Fe-Ni-Co Low Thermal Expansion Alloy, J. Kor. Inst. Met. Mater., Vol. 41, No. 9, pp. 539-550.
  5. T. Sakai, 1995, Dynamic Recrystallization Microstructures under Hot Working Conditions, J. Mater. Process. Technol., Vol. 53, Issues 1-2, pp. 349-361. https://doi.org/10.1016/0924-0136(95)01992-N
  6. C. M. Sellars, W. J. M. Tegart, 1966, La relation entre la resistance et la structure dans la deformation a chaud, Mem. Scient. Revue Metall., Vol. 63, No. 9, pp. 731-746. https://doi.org/10.1051/metal/196663090731
  7. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, D.R. Barker, 1984, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, Vol. 15, No. 10, pp. 1883-1892. https://doi.org/10.1007/BF02664902
  8. Special Metals, 2010, www.specialmetals.com
  9. Y. Wang, J. Yang, C. Ye, X. Fang, L. Zhang, 2004, Thermal Expansion of Cu Nanowire Arrays, Nanotechnol., Vol. 15, No. 11, pp. 1437-1440. https://doi.org/10.1088/0957-4484/15/11/009
  10. B. B. Panigrahi, M. M. Godkhindi, 2005, Structural Changes and Thermal Expansion Behavior of Ultrafine Titanium Powders during Compaction and Heating, J. Mater. Res., Vol. 20, No. 3, pp. 580-585. https://doi.org/10.1557/JMR.2005.0075
  11. L. H. Qian, S. C. Wang, Y. H. Zhao, K. Lu, 2002, Microstrain Effect on Thermal Properties of Nanocrystalline Cu, Acta Mater., Vol. 50, No. 13, pp. 3425-3434. https://doi.org/10.1016/S1359-6454(02)00155-6
  12. Y. Liu, L. Liu, Z. Wu, J. Li, B. Shen, W. Hu, 2010, Grain Growth and Grain Size Effects on the Thermal Expansion Properties of an Electrodeposited Fe-Ni Invar Alloy, Scr. Mater., Vol. 63, No. 4, pp. 359-362. https://doi.org/10.1016/j.scriptamat.2010.04.006
  13. S. G. Wang, Y. Mei, K. Long, Z. D. Zhang, 2010, The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300K, Nanoscale Res. Lett., Vol. 5, No. 1, pp. 48-54. https://doi.org/10.1007/s11671-009-9441-4

Cited by

  1. Numerical Evaluation of Backward Extrusion and Head Nosing for Producing a 6.75L Small Seamless AA6061 Liner vol.22, pp.4, 2013, https://doi.org/10.5228/KSTP.2013.22.4.204