Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature

HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도

  • 양영명 (한국가스공사 연구개발원 이용기기연구실) ;
  • 김호연 (한국가스공사 연구개발원 이용기기연구실)
  • Published : 1998.06.30

Abstract

Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

Keywords