• Title/Summary/Keyword: Temperature Increase

Search Result 11,457, Processing Time 0.042 seconds

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

Effect of Thermal Cycle and Stress on the Intergranular Corrosion in 316 Stainless Steel (316 스테인리스강의 입계부식에 미치는 열사이클과 응력의 영향)

  • Jung, Byong-Ho;Kim, Moo-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.709-715
    • /
    • 2006
  • The effects of thermal cycle condition and applied stress on the intergranular corrosion in austenitic 316 type stainless steels were investigated. Specimens were solution-treated at 1100$^{\circ}C$ for one hour and then sensitized in the temperature range of $500{\sim}800^{\circ}C$ by holding $2{\sim}300s$ with a various applied stresses of $0{\sim}8kg/mm^2$. Degree of sensitization. DOS %, was measured through polarization curve by electrochemical DL-EPR test. Microstructural observations were also conducted DOS % increased with an increase of sensitization temperature and/or holding time. Increase of applied stress resulted in increase of DOS % and more corroded surface because of acceleration of intergranular corrosion and fine grain size due to the stress. Cr depleted zone near grain boundary was observed. The amount of depletion was profounded with an increase of sensitization temperature, holding time and applied stress. $M_{23}C_6$ carbides were precipitated discontinuously at grain boundary. However, its amount was relatively small in the thermal cycle condition of 800$^{\circ}C$, 300sec and 4kg/mm$^2$.

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Transparent Thin Film Dye Sensitized Solar Cells Prepared by Sol-Gel Method

  • Senthil, T.S.;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1188-1194
    • /
    • 2013
  • Transparent $TiO_2$ thin films have been prepared by sol-gel spin coating method. The sols used for deposition of thin films were prepared with different ethanol content. The effect of ethanol (solvent) concentration and annealing temperature on the performance of $TiO_2$ thin film solar cells has been studied. The results indicate that the as deposited films are amorphous in nature. $TiO_2$ thin films annealed at temperatures above $350^{\circ}C$ exhibited crystalline nature with anatase phase. The results also indicated that the crystallinity of the films improved with increase of annealing temperature. The high resolution transmission electron microscope images showed lattice fringes corresponding to the anatase phase of $TiO_2$. The band gap of the deposited films has been found to decrease with increase in annealing temperature and increase with increase in ethanol concentration. The dependents of photovoltaic efficiency of the dye-sensitized $TiO_2$ thin film solar cells (DSSCs) with the amount of ethanol used to prepare thin films was determined from photocurrent-voltage curves.

Preparation of SnO$_2$ Thin Films by Chemical Vapor Deposition Using Hydrolysis of SnCla$_4$ and Gas-sensing Characterisics of the Film -Effect of Deposition Variables on the Deposition Behavior and the Electrical Resistivity of SnO$_2$ Thin Film- (SnCl$_4$가수분해 반응의 화학증착법에 의한 SnO$_2$박막의 제조 및 가스센서 특징(I) Preparation of SnO2 Thin Films by chemical Vapor Deposition Using Hydrolysis of SnCl4 and gas-sensing characteristics of the Film)

  • 김용일;김광호;박희찬
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.2
    • /
    • pp.18-23
    • /
    • 1990
  • Thin films of tin oxide were prepared by chemical vapor deposition (C.V>D) using the hydrolysis reaction of SnCl4, Deposition rate increased with the increase of temperature up to $500^{\circ}C$and then decreased at $700^{\circ}C$, Deposition rate with SnCl4 partial pressure showed RidealEley behavir. It was found that SnO2 thin film deposited at the temperature above $400^{\circ}C$ had(110) and (301) plane preferred orientation with crystallinity of rutite structure. Electrical resisvity of SnO2 thin film decreased with increase increase of deposition temperature and showed minimum value of 10-3 ohm at $500^{\circ}C$and than largely increased increased with further increase of deposition temperture.

  • PDF

A Clinical Study on the Effect of Ginseng to Control Superficial Body Temperature (인삼 복용 전후 체표온도의 변화에 관한 임상적 연구)

  • Choi, Ga-Ya;Cho, Jung-Hun;Jang, Jun-Bock;Lee, Kyung-Sub
    • Journal of Oriental Medical Thermology
    • /
    • v.2 no.1
    • /
    • pp.49-55
    • /
    • 2003
  • In Oriental medicine, Ginseng had been used for many diseases widely. It's main effects are suppling Qi and Promoting metastasis. The objective of this study is to examine the effect of Ginseng on control of body temperature. We conducted this study with 24 volunteers who had no problem in their health from November 2002 to January 2003. The body temperature were measured by DITI and thermometer before taking Ginseng and after 30minutes of the taking Ginseng extract 15g. We observed the difference of temperature among face chest and upper abdomen. All data were coded for computer analysis and significance were tested by Paired t-test and independent-t-test. According to our study, the axillary temperature show no signifiant change between two groups. The difference of temperature$({\Delta}T)$ between face and upper abdomen significantly increase after taking Ginseng extract(p<0.01). The difference of temperature$({\Delta}T)$ between face and chest significantly increase after taking Ginseng extract(p<0.05).

  • PDF

Temperature Measurement on Ultrasonic Weld Surfaces by Using an Infrared Sensor (적외선 센서를 이용한 초음파 용착부의 마찰열 측정)

  • Kim, Won-Ho;Kang, Eun-Ji;Min, Kyung-Tak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.425-429
    • /
    • 2017
  • During ultrasonic welding, plastic deformation, elastic hysteresis, and friction generate heat at the contact portions of the two materials to be welded, theoretically analyzing and experimentally measuring the temperature at the welded part are very important for identifying the heat affected zone. However, the welding temperature during ultrasonic welding wherein welding is performed in less than a second is a challenge. We investigated the effects of welding conditions such as welding time, welding pressure, and the ultrasonic vibration amplitude of horns on the temperature of welded surface of a Ni sheet of thickness 0.1 mm. We used a horn with a resonance frequency of 40 kHz and an ultrasonic welder. The temperature was measured using a intrared sensor, and its characteristics were investigated. Experimental results showed that increase in welding time and pressure and ultrasonic vibration amplitude of horns generally caused the increase in surface temperature of the weld.

Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis (저온 열분해시 HDPE 및 LDPE의 액화 특성)

  • Lee, Bong-Hee;Park, Su-Yul;Kim, Ji-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

A Study on the Mechanical Properties Based on Frit Addition in 3Y-TZP Zirconia Composition (3Y-TZP Zirconia 조성에서 Frit의 첨가에 의한 기계적 특성 연구)

  • Kwon, Eun-Ja;Lee, Gyu-Sun;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • This study was to add crushed frit with different grain sizes to 3Y-TZP so that it could determine the mechanical properties depending on sintering temperature. In this study, 3 types specimens were prepared in powder with respective additions of 20wt.% frit, which was sized through 24-, 48- and 72-hour ball milling with zirconia. Then, sintered pellets were tested in experiments under the temperature variations for different compositions. As a result, this study came to the following findings: 1. It was found that the higher sintering temperature and the longer ball milling time of frit led to the higher sintered density. 2. Bending strength tended to increase with higher sintering temperature and longer ball milling time of frit. 3. Hardness tended to increase with higher sintering temperature and longer ball milling time of frit. 4. However, it was found that fracture toughness didn't vary significantly depending on sintering temperature. From these findings, it was concluded that the smaller frit grain size and the narrower particle size distribution of frit lead to the better mechanical properties.

  • PDF

Effects of Deposition Parameters on TiN Film by Plasma Assisted Chemical Vapor Deposition(I) -Influence of Temperature on the TiN Deposition- (플라즈마 화학 증착법(PACVD)에 의한 TiN 증착시 증착변수가 미치는 영향(I) -증착온도를 중심으로-)

  • Shin, Y.S.;Ha, S.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1989
  • To investigate the influence of temperature on the TiN film, it was deposited on the STC-3 steel and Si-wafer from $TiCl_4/N_2/H_2$ gas mixture by using the radio frequency plasma assisted chemical vapor deposition. The deposition was performed at temperature of $400^{\circ}C-500^{\circ}C$. The results showed that crystalline TiN film was deposited over $480^{\circ}C$, and all specimens showed the crystalline TiN X-ray diffraction peaks after vacuum heat treatment for 3 hrs, at $1000^{\circ}C$, $10^{-5}torr$. While the film thickness was increased above $480^{\circ}C$, it was decreased under $480^{\circ}C$ as temperature increased. And the contents of titanium were increased and it of chlorine were decreased as temperature increased. Because temperature increase was attributed to the increase in the density of TiN film, surface hardness of TiN film was increased with temperature.

  • PDF