DOI QR코드

DOI QR Code

Transparent Thin Film Dye Sensitized Solar Cells Prepared by Sol-Gel Method

  • Senthil, T.S. (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Misook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2012.12.03
  • Accepted : 2013.01.26
  • Published : 2013.04.20

Abstract

Transparent $TiO_2$ thin films have been prepared by sol-gel spin coating method. The sols used for deposition of thin films were prepared with different ethanol content. The effect of ethanol (solvent) concentration and annealing temperature on the performance of $TiO_2$ thin film solar cells has been studied. The results indicate that the as deposited films are amorphous in nature. $TiO_2$ thin films annealed at temperatures above $350^{\circ}C$ exhibited crystalline nature with anatase phase. The results also indicated that the crystallinity of the films improved with increase of annealing temperature. The high resolution transmission electron microscope images showed lattice fringes corresponding to the anatase phase of $TiO_2$. The band gap of the deposited films has been found to decrease with increase in annealing temperature and increase with increase in ethanol concentration. The dependents of photovoltaic efficiency of the dye-sensitized $TiO_2$ thin film solar cells (DSSCs) with the amount of ethanol used to prepare thin films was determined from photocurrent-voltage curves.

Keywords

References

  1. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  2. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  3. Kuyyadi P. Biju; Mahaveer K. Jain, Thin Solid Films 2008, 516, 2175. https://doi.org/10.1016/j.tsf.2007.06.147
  4. Savenije, T. J.; Warman, J. M.; Goosens, A. Chem. Phys. Lett. 1998, 148, 287.
  5. Won, D. J.; Wang, C. H.; Jang, H. K.; Choi, D. J. Appl. Phys. A 2001, 73, 595. https://doi.org/10.1007/s003390100804
  6. Wang, C. C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113. https://doi.org/10.1021/cm990180f
  7. Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, S. Chem. Lett. 2000, 8, 942.
  8. Adachi, M.; Okada, I.; Ngamsinlapasathian, S.; Murata, Y.; Yoshikawa, S. Electrochem. 2002, 70, 449.
  9. Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. J. Electrochem. Soc. 2003, 150, 488.
  10. Boschloo, G. K.; Goossens, A. J. Schoonman, J. Electro. Chem. Soc. 1997, 1311, 144.
  11. Kavan, L.; Gratzel, M. Electrochem. Acta 1995, 643, 40.
  12. Lei, Y.; Zhang, L. D.; Fan, J. C. Chem. Phys. Lett. 2001, 231, 338.
  13. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 3157, 80.
  14. Xu, J.; Zhao, X.; Du, J.; Chen, W. J. Sol-Gel Sci. Technol. 2000, 163, 17.
  15. Takahashi, M.; Tsukigi, K.; Uchino, T.; Yoko, T. Thin Solid Films 2001, 231, 388.
  16. Fan, Q.; McQuillin, B.; Bradley, D. D. C.; Whitelegg, S.; Seddon, A. B. Chem. Phys. Lett. 2001, 325, 347.
  17. Liu, H.; Yang, W. S.; Ma, Y.; Cao, Y. A.; Yao, J. N. Zhang, J.; Hu, T. D. Langmuir 2003, 3001, 19.
  18. Sen, S.; Mahanty, S.; Roy, S.; Heintz, O.; Bourgeois, S.; Chaumont, D. Thin Solid Films 2005, 245, 474.
  19. Pomoni, K.; Vomvas, A.; Trapalis, C. Thin Solid Films 2005, 160, 479.
  20. Guo, B.; Liu, Z. L.; Hong, L.; Jiang, H. X.; Lee, J. Y. Thin Solid Films 2005, 310, 479.
  21. Lee, R.-H.; Huang, Y.-W. Thin Solid Films 2009, 517, 5903. https://doi.org/10.1016/j.tsf.2009.04.019
  22. Lai, Y.-H.; Lin, C.-Y.; Chen, J.-G.; Wang, C.-C.; Huang, K.-C.; Liu, K.-Y.; Lin, K.-F.; Lin, J.-J.; Ho, K.-C. Sol. Energy Mater. Sol. Cells 2010, 94, 668. https://doi.org/10.1016/j.solmat.2009.11.027
  23. Kontos, A.-I.; Kontos, A.-G.; Tsoukleris, D.-S.; Bernard, M.-C.; Spyrellis, N.; Falaras, P. J. Mater. Process. Technol. 2008, 196, 243. https://doi.org/10.1016/j.jmatprotec.2007.05.051
  24. Andrade, L.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Ribeiro, H. A.; Mendes, A. Gratzel, M. Chemphyschem 2009, 10, 1117.
  25. Patrocinio, A. O. T.; Mizoguchi, S. K.; Paterno, L. G.; Garcia, C. G. Murakami Ih, N. Y. Synth. Met. 2009, 159, 2342.
  26. Thiemig, D.; Bund, A. Surf. Coat. Technol. 2008, 202, 2976. https://doi.org/10.1016/j.surfcoat.2007.10.035
  27. Hao, S.; Wu, J.; Fan, L.; Huang, Y.; Lin, J.; Wei, Y. Solar Energy 2004, 76, 745. https://doi.org/10.1016/j.solener.2003.12.010
  28. Karthik, K.; Kesava Pandian, S.; Victor Jaya, N. Appl. Surf. Sci. 2010, 256, 6829. https://doi.org/10.1016/j.apsusc.2010.04.096
  29. Bulent, E. Yoldas, J. Mater. Sci. 1986, 21, 1087. https://doi.org/10.1007/BF01117399
  30. Choi, H.; Stathatos, E.; Dionysiou, D. D. Appl. Catal. B-Environ. 2006, 63, 60. https://doi.org/10.1016/j.apcatb.2005.09.012
  31. Sanchez, C.; Livage, J. J. Non-Cryst. Solids 1992, 11, 145.
  32. Senthil, T. S.; Muthukumarasamy, N.; Agilan, S.; Thambidurai, M.; Balasundaraprabhu, R. Mater. Sci. Eng. B 2010, 174, 102. https://doi.org/10.1016/j.mseb.2010.04.009
  33. Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; Willey: New York, 1974.
  34. Boschloo, G. K.; Goossens, A.; Schoonman, J. J. Electrochem. Soc. 1997, 1311, 144.
  35. Aoki, A.; Nogami, G. J. Elecrochem. Soc. 1996, L191, 143.
  36. Kim, D. Y.; Kang, M. Mat. Chem. Phys. 2012, 136, 947. https://doi.org/10.1016/j.matchemphys.2012.08.026

Cited by

  1. Effect of Annealing Time of TiO2 Thin Film Deposited by Spray Pyrolysis Deposition Method for Dye-Sensitized Solar Cell Application vol.773-774, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.773-774.647
  2. Polyethylene glycol-assisted growth of Cu2SnS3 promising absorbers for thin film solar cell applications vol.94, pp.27, 2013, https://doi.org/10.1080/14786435.2014.952257
  3. Investigation of the Effects of Acid Content and Annealing on the Properties of Nanostructured TiO2 Sol vol.207, pp.1, 2020, https://doi.org/10.1080/10584587.2020.1728683