• 제목/요약/키워드: Temperature Controller

Search Result 720, Processing Time 0.07 seconds

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

Development of Temperature Control Xystem for Semiconductor Test Handler I-System Design (반도체 테스트 핸들러의 온도 제어 시스템 개발 I - 시스템 구성)

  • 조수영;이호준;이성은;김영록
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.73-76
    • /
    • 1997
  • The temperature control system for semiconductor test handler is designed. We controlled the temperature of chamber using 3-wire RTD sensor and MVME EMbedded controller. VxWorks that is a real-time operating system is used and heater is controlled by PWM. Temperature fluctuation of chamber is decreased within 0.3.deg. C, which is about one-half of that of commercial controller.

  • PDF

Temperature control for once through boiler (관류형 보일러의 온도제어)

  • 김은기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.900-904
    • /
    • 1991
  • It is important and difficult to control the steam temperature in the once through boiler. Generally, steam temperature of once through boiler not only is controlled by boiler spray water flow, but also is influenced by feed water flow and fuel flow. So we have to make the same gain of fuel flow controller and feed water flow controller. This paper is shown the design and test of steam temperature and feed water flow control system for once through boiler in pusan thermal power plant.

  • PDF

A Study on the Enhancement of Cooling Efficiency for the Cabinet of Automatic Controller in the Interior of Industrial Building (산업용 건축물 내 자동제어반의 냉각효율 향상에 관한 연구)

  • Kim, Soon-Ho;Park, Hyun-Jung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.79-87
    • /
    • 2013
  • The improvement of cooling efficiency for the cabinet of automatic controller is the most efficient method of it's application. Therefore, this study has been analyzed and investigated the improvement of cooling efficiency and reduction of energy for the cabinet of automatic controller, respectively. So this study was conducted to enhancement of cooling efficiency for the cabinet of automatic controller by making a structure which produces difference of air pressures in the entrance tube of external air. And the structure has capacity of the pyrogen source (PTC elements) to make temperature range from $145^{\circ}C$ to $155^{\circ}C$. Consequently, temperatures of the upper, the lower in the interior of the cabinet of automatic controller and the exhaust part were revealed $28.57^{\circ}C$, $23.38^{\circ}C$and $36.14^{\circ}C$(average temperature of the exhaust part in case of existing method : $45^{\circ}C$) in target test of this study, respectively. It was found that the cabinet of the automatic controller has better cooling ability than the cabinet of automatic controller by using an existing method.

A study on the characteristic or temperature for Ultrasonic Motor using Fuzzy Controller - with frequency control (퍼지제어기를 이용한 초음파 모터의 온도특성에 관한 연구-주파수 제어)

  • Seo, Ki-Yeol;Cha, In-Su;Park, Hae-Am;Choi, Jang-Gun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.597-599
    • /
    • 1996
  • This paper describes the bending traveling-wave type ultrasonic motor which generates the traveling wave by combining two standing waves with phase difference time and space. In $+20^{\circ}C{\sim}30^{\circ}C$, the USM motor operation character has represented normal condition. But the other temperature, (that is say, when long time operating condition) USM operation characteristic has abnormal condition, that is driving frequency, drive current and r.p.m is down. The recent USM has controller without temperature compensation. This study aimed at fuzzy controller which must follow the frequency at operation temperature and then r.p.m and torque increase.

  • PDF

A Study on the characteristic of temperature for Ultrasonic Motor using Fuzzy Controller - with phase angle difference control (퍼지제어기를 이용한 초음파 모터의 온도특성에 관한 연구 - 위상차 제어)

  • 서기열;차인수;윤형상;유권종
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.52-55
    • /
    • 1996
  • This paper describes the bending traveling-wave type ultrasonic motor which generates the traveling wave by combining two standing waves with phase difference time and space. In $+20^{\circ}C$~$30^{\circ}C$, the USM motor operation character has represented normal condition. But the other temperature, (that is say, when long time operating condition) USM operation characteristic has abnormal condition, that is driving frequency, drive current and r.p.m is down. The recent USM has controller without temperature compensation. This study aimed at fuzzy controller which must follow the phase angle difference 90$^{\circ}$at operation temperature and them r.p.m and torque increase.

  • PDF

A Controller Design of the Bilinear System for HVAC(Heating, Ventilating and Air-conditioning) System (냉난방 시스템의 이중선형 시스템에 관한 제어기 설계)

  • 이정석;강민수;김명호;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, a HVAC controller which has a bilinear system is designed to control the air temperature in building room and a saving of energy on the HVAC system. For modeling of the HVAC bilinear system, AHU(Air Handling Unit) is modeled on the control of inside-outside air flow using three dampers in a duct. A heat exchanger and the single room are also modeled by the energy conservation law. Under the modeling of the HVAC bilinear system, the control's law of the bilinear HVAC system is derived by Lyapunov's non-linear theory and Deress's the linear feedback laws for bilinear system. In this paper it was proved that the controller of the HVAC bilinear system is able to control the air temperature with a disturbance in order to get a target of temperature in the building room by the computer simulation when the control inputs regulate the air flow rate and a capacity of the heat exchanger.

  • PDF

Cooling System Control of Building Integrated Photovoltaic Generation Using Micro-controller (마이크로 컨트롤러를 이용한 BIPV 발전의 냉각시스템 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1120-1121
    • /
    • 2008
  • This paper is proposed cooling system of BIPV(Building Integrated Photovoltaic) by micro-controller. The output power of PV generation system is not systematically tracked and influenced by various factors; solar irradiance, solar cell temperature. The temperature of solar module should be minimized to increase electrical output. Therefore, it is proposed that micro-controller cools to decrease temperature of solar module using thermoelement. The validity of this paper is proved by comparing solar module temperature of cooling system and un-cooling system.

  • PDF

Temperature Control of a Test Plate for Semiconductor Using a Cooler and a Heater (Cooler와 Heater를 이용한 반도체 시험용 Plate의 온도제어)

  • 이호준;전창완;심용재;심운용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.320-320
    • /
    • 2000
  • In this paper, a temperature controller of a test plate for semiconductor is developed using LQG/LTR methodology. The liquid is heated or cooled in a tank by a heater of a cooler. The controller controls the flow of heated or cooled liquid in the plate by controling an electronic valve. The developed controller is applied to the plate designed for function test of a semiconductor under high or low temperature environment. As a result, control using the heater and the cooler together shows better control performance than using the heater or the cooler separately.

  • PDF

A Temperature Stable PWM Controller Using Bandgap Reference Voltage (밴드갭 기준전압을 이용한 동작온도에 무관한 PWM 컨트롤러)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1552-1557
    • /
    • 2007
  • In this work, temperature stable pulse width modulation controller using bandgap reference voltage is proposed. Two bandgap reference voltages are designed by using BiCMOS technology which are temperature dependent and independent voltage references. PWM controller is designed by using 3.3 volt supply voltage and the output frequency is 1MHz. From simulation results, the variation of output pulse width is less than form +0.86% to -0.38% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$.