• Title/Summary/Keyword: Temperature Controller

Search Result 720, Processing Time 0.031 seconds

Development of Temperature Control System for Semiconductor Test Handler II - Controller Design (반도체 테스트 핸들러의 온도제어 시스템 개발 II - 제어기 설계)

  • 김재용;강태삼;이호준;선기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.77-80
    • /
    • 1997
  • In this paper presented is a temperature controller for a semiconductor test handler. Using ARMAX model and least square method, the chamber model for the design of a controller is identified through experiment. With the identified model an LQG/LTR controller is designed. Experiment with a real test handler demonstrated good performance in that its overshoot is small and response time is fast.

  • PDF

A Study on the Improvement of Electronic Controller for Computer Dryer Using Dual Processor (이중 프로세서를 이용한 컴퓨터 건조기의 전자 제어장치 성능 개선에 관한 연구)

  • 박세현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.71-79
    • /
    • 1995
  • This paper describes the design and implementation of dryer controller using the dual processor. This system has higher performance of system recovery from the noise than the existing single processor dryer. And in this paper temperature control method of Dryer using on-off fuzzy logic is proposed to improve the overshoot of temperature in dryer. Experimental results shows that the performance of fuzzy controller is better than that of controller based upon on-off control method.

  • PDF

Robust fuzzy self-organizing control system of temperature environmental test equipment (온도환경 시험장비의 강인한 퍼지 자기조성 제어 시스템)

  • 김인식;윤일선;남세규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1086-1088
    • /
    • 1993
  • A robust fuzzy self-organizing controller(SOC) is proposed for an environmental temperature chamber. Although fuzzy SOC can improve the performance of nonlinear system, the controller is ineffective to solve the performance degradation owing to the time varying factors. In this paper, we construct the fuzzy SOC with a predictive scheme based on the 386PC. The usefulness of the proposed scheme is shown through the comparison of the PI controller and the fuzzy controller.

  • PDF

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Unit Response Optimizer mode Design of Ultra Super Critical Coal-Fired Power Plant based on Fuzzy logic & Model Predictive Controller (퍼지 로직 및 모델 예측 제어기 적용을 통한 초초임계압 화력발전소 부하 응답 최적화 운전 방법 설계)

  • Oh, Ki-Yong;Kim, Ho-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2285-2290
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant component. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control process of power plant in ultra super critical point because that point has highly nonlinear characteristics. In this paper, new control logic, Unit Response Optimizer Controller(URO Controller) which is based on Fuzzy logic and Model Predictive Controller, is introduced for better performance. Then its performance is tested and analyzed with design guideline.

Immune Based 2-DOF PID Controller Design for Complex Process Control

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.2-70
    • /
    • 2002
  • In the thermal power plant, it is difficult to maintain strict control of the steam temperature in order to avoid thermal stress, because of variation of the heating value according to the fuel source, the time delay of changes in main steam temperature versus changes in fuel flow rate, difficulty of control on the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, fluctuation of inner fluid water and steam flow rates widely during load-following operation. Up to the present time, the PID controller has been used to operate this system...

  • PDF

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Thermal Performance of Solar Thermal System by On-Off Differential Temperature of Differential Temperature Controller (차온제어기의 On-Off 온도설정에 따른 태양열 시스템 열성능)

  • Shin, U-Cheul;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • On-off differential controller is one of the very important components which affect the system performance of the active solar thermal system. In this study, analyses were made regarding the influence of "on-off" setting temperature on the system efficiency and on the electrical consumption by circulation pump. This study was performed by experiment as well as the computer simulation using TRNSYS program. The simulation system was developed in this study was verified the its reliability by the experimental results. As a results, the turn off temperature(${\Delta}T_{off}$) is much more influence than the turn on temperature(${\Delta}T_{on}$) on the system efficiency. It is more clear and sensitivity in winter season. Finally the optimum on-off setting value and the system on-off pattern according to the several different kind of system was also represented.

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.