• 제목/요약/키워드: Temperature Control of Fuel

검색결과 470건 처리시간 0.023초

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

저온 고체산화물 연료전지용 공기극 미세구조 제어 및 성능개선 (Cathode Microstructure Control and Performance Improvement for Low Temperature Solid Oxide Fuel Cells)

  • 강중구;김진수;윤성필
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.727-732
    • /
    • 2007
  • In order to fabricate a highly performing cathode for low-temperature type solid oxide fuel cells working at below $700^{\circ}C$, electrode microstructure control and electrode polarization measurement were performed with an electronic conductor, $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and a mixed conductor, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$(LSCF). For both cathode materials, when $Sm_{0.2}Ce_{0.8}O_2$ (SDC) buffer layer was formed between the cathode and yttria-stabilized zirconia (YSZ) electrolyte, interfacial reaction products were effectively prevented at the high temperature of cathode sintering and the electrode polarization was also reduced. Moreover, cathode polarization was greatly reduced by applying the SDC sol-gel coating on the cathode pore surface, which can increase triple phase boundary from the electrolyte interface to the electrode surface. For the LSCF cathode with the SDC buffer layer and modified by the SDC sol-gel coating on the cathode pore surface, the cathode resistance was as low as 0.11 ${\Omega}{\cdot}cm^2$ measured at $700^{\circ}C$ in air atmosphere.

작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향 (Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector)

  • 조인수;이진욱
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

외부온도가 수송용 메탄올연료전지 성능에 미치는 영향 (Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles)

  • 한창화;최지선;정대승;한상훈;이중희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향 (Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump)

  • 신윤섭;이기수;김현철;정수진;박경용;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

석탄화력발전소 보일러 연료제어 알고리즘과 분산제어시스템의 개발 (The Development of Boiler Fuel Control Algorithm and Distributed Control System for Coal-Fired Power Plant)

  • 임건표;이흥호
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.36-44
    • /
    • 2013
  • This paper is written for the development and application of boiler fuel control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. Fuel control algorithm has the upper algorithm and it is boiler master control algorithm that controls the fuel, feed water, air by generation output demand. Generation output demand by power load influences fuel control. Because fuel can not be supplied fast to the furnace of boiler, fuel control algorithm was designed adequately to control the steam temperature and to prevent the explosion of boiler. This control algorithms were coded to the control programs of distributed control systems which were developed domestically for the first time. Simulator for coal-fired power plant was used in the test step. After all of distributed control systems were connected to the simulator, the tests of the actual power plant were performed successfully. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

자동차용 연소식 프리히터의 온도제어를 위한 퍼지 제어기 설계 (Fuzzy Controller design of fuel fired heater for vehicle to control temperature)

  • 정원근;이한욱;이상준;김주호;김광열;조원래;이건기
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권4호
    • /
    • pp.29-36
    • /
    • 2009
  • 본 논문은 버스에 사용되는 연소식 프리히터(Fuel Fired Heater) 퍼지 제어기(Fuzzy controller)를 설계하였다. 프리 히터는 얼마나 빠른 시간 안에 설정한 온도에 다다르는지와 공간내의 온도 편차가 얼마나 작게 발생하는지의 두 가지가 가장 중요한 요소이다. 기존의 연소식 프리히터의 온도 제어 방식으로 사용된 PI 제어기의 온도편차를 줄임과 동시에 응답특성을 개선한 퍼지 제어기를 설계하여 그 성능을 평가하였다. 설계된 퍼지 제어기에서 온도를 설정하면 기존의 PI 제어방식에서는 $25^{\circ}C$의 도달시간이 12분 소요되었으나 퍼지 제어방식에서는 9분 20초 소요되어 기존의 제어기보다 퍼지제어기가 2분 40초의 빠른 응답 성능으로 향상됨을 확인하였다. 난방의 온도 편차에서도 기존의 PI 제어 방식에서는 $2.4^{\circ}C$의 편차를 보인 반면 설계된 퍼지 제어기에서는 $1.6^{\circ}C$로 온도 편차 또한 개선되었음을 확인하였다.

  • PDF

최적의 연료분사와 점화시기 제어를 위한 자동차 엔진용 전자제어장치 설계 및 개발 (Design and Development of an Electronic Control Unit of the Automobile Engine for Optimal Fuel Injection and Spark Timing Control)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.644-654
    • /
    • 2001
  • In this paper, an electronic control unit of the automobile engine for optimal fuel injection an spark timing control has been designed and developed. This system includes hardware and software for a precise control of fuel injection and ignition timing. Especially, the crank angle sensor provides two separate signals: One is the position signal (POS) which indicates 180 degree pulses per revolution, and the other is the reference signal (REF) that represents each cylinder individually. Consequently, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately. Through the experiment, it has been found that the fuel injection duration and the position of MBT have been influenced by coolant temperature, air flow rate and engine speed.

  • PDF