• Title/Summary/Keyword: Temperature Analysis.

Search Result 19,424, Processing Time 0.046 seconds

Design Characteristics Analysis for Very High Temperature Reactor Components (VHTR 초고온기기 설계특성 분석)

  • Kim, Yong Wan;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2016
  • The operating temperature of VHTR components is much higher than that of conventional PWR due to high core outlet temperature of VHTR. Material requirements and technical issues of VHTR reactor components which are mainly dominated by high temperature service condition were discussed. The codification effort for high temperature material and design methodology are explained. The design class for VHTR components are classified as class A or B according to the recent ASME high temperature reactor design code. A separation of thermal boundary and pressure boundary is used for VHTR components as an elevated design solution. Key design characteristics for reactor pressure vessel, control rod, reactor internals, graphite reflector, circulator and intermediate heat exchanger were analysed. Thermo-mechanical analysis of the process heat exchanger, which was manufactured for test, is presented as an analysis example.

Weibull Statistical Analysis of Elevated Temperature Tensile Strength and Creep Rupture Time in Stainless Steels (스테인리스 강의 고온 인장강도와 크리프 파단시간의 와이블 통계 해석)

  • Jung, W.T.;Kim, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This paper is concerned with the stochastic nature of elevated temperature tensile strength and creep rupture time in 18Cr-8Ni stainless steels. The Weibull statistical analysis using the NRIM data sheet has been performed to investigate the effects of variability of the elevated temperature tensile strength and creep rupture time on the testing temperature. From those investigations, the distributions of temperature tensile strength and creep rupture time were well followed in 2-parameter Weibull. The shape parameter and scale parameter for the Weibull distribution of tensile strength were decreased with increasing the testing temperature. For the creep rupture time, generally, the shape parameter were decreased with increasing the testing temperature.

EHL Analysis of Connecting Rod Bearings Considering Effects of Temperature Variation (온도 변화의 영향을 고려한 커넥팅 로드 베어링의 EHL 해석)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.228-235
    • /
    • 2001
  • EHL analysis of connecting rod bearing is proposed which includes effects of temperature variation in lubrication film. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while connecting rod big end temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication film is absorbed by the film itself, and the remainder flows into the bearing surface. Mass-conserving cavitation algorithm is applied and the effect of variable viscosity is included to solve the Reynolds equation. Simulation results of the connecting rod bearing in internal combustion engine are presented. It is shown that the temperature variation has remarkable effects on the bearing performance. It is concluded that the EHL analysis considering effects of the temperature variation is strongly recommended to predict the connecting rod bearing performance in internal combustion engine.

Real-time estimation of Temperature Distribution of a Ball Screw System Using Modal Analysis and Observer (모드해석과 관측기에 의한 볼스크류 온도분포의 실시간 예측)

  • 김태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.635-640
    • /
    • 2000
  • Thermal deformation of machine tools can be evaluated from the analysis of the whole temperature field. However, it is extremely inefficient and impossible to acquire the whole temperature field by measuring temperatures of every point. So, a temperature estimator, which can estimate the whole temperature field from the temperatures of just a few points, is required. In this paper, 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. and then state observer is designed to estimate the intensity of heat source and the whole temperature field in real-time. The reliability of this estimator is verified by making a comparison between solutions by the proposed method and the exact solutions of examples. The proposed method is applied to the estimation of temperature distribution in a ball screw system.

  • PDF

A Numerical Study on Temperature Fields in MCCB (MCCB 내의 온도장에 대한 수치적 연구)

  • Park, S.K.;Lee, Jong-Chul;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.145-150
    • /
    • 2003
  • In this paper we have studied the characteristics of temperature fields in a Molded Case Circuit Breaker (MCCB). A switch and a trip device are arranged in narrow space of the MCCB. Thus, thermal factors have been risen to important problem. The temperature rise means an energy loss and it becomes the reason of fatal fault in devices. Also, the temperature rise on the connection and the contact parts is regulated up to $115^{\circ}C$ and $105^{\circ}C$, respectively. Therefore, a study for preventing the temperature rise should be investigated. A numerical analysis method that has confidence might be preceded for this purpose. In order to verify the confidence of temperature field analysis, the results of the numerical analysis are compared with those of experimental one for the same model. Comparison results show a qualitatively good agreement within ${\pm}5%$ errors.

  • PDF

Vibration Analysis of Pipe with Elbow subject to Internal Pressure and Temperature (내압 및 온도조건을 고려한 Elbow부가 있는 원형배관의 진동해석)

  • Kim, Woel-Tae;Lee, Hyun-Seung;Lee, Young-Shin;Cho, Taek-Dong;Shin, Sung-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.223-226
    • /
    • 2004
  • Vibration analysis of pipe with Elbow subject to internal pressure and temperature is studied through a commercial finite element analysis tool. The natural frequency of Elbow increased very slightly as internal pressure increases. Meanwhile, the frequency of Elbow decreased as temperature increases. It is shown that frequency deviation caused by temperature was greater than that caused by pressure. As the length of Elbows increases, frequency deviation by temperature stew rapidly, but frequency deviation by pressure was not so high. It is concluded that more concern needs to be focused on temperature rather than on pressure in terms of natural frequency.

  • PDF

Analysis of Temperature Effects on Raman Silicon Photonic Devices

  • Kim, Won-Chul;Park, Dong-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.288-297
    • /
    • 2008
  • Recent research efforts on study of silicon photonics utilizing stimulated Raman scattering have largely overlooked temperature effects. In this paper, we incorporated the temperature dependences into the key parameters governing wave propagation in silicon waveguides with Raman gain and investigated how the temperature affects the solution of the coupled-mode equations. We then carried out, as one particular application example, a numerical analysis of the performance of wavelength converters based on stimulated Raman scattering at temperatures ranging from 298 K to 500 K. The analysis predicted, among other things, that the wavelength conversion efficiency could decrease by as much as 12 dB at 500 K in comparison to that at the room temperature. These results indicate that it is necessary to take a careful account of temperature effects in designing, fabricating, and operating Raman silicon photonic devices.

3-Dimensional Analysis of Temperature Distribution in Transformer (변압기 3차원 온도분포 해석)

  • Song, K.D.;Lee, W.Y.;Oh, Y.H.;Kim, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.86-88
    • /
    • 1999
  • An analysis of temperature distribution in transformer is necessary for cooling design. But, it is very difficult to make that analysis because of the complicated structure of transformer. Particulary. if it is asymmetry, 3 dimensional analysis is required. This paper presents the 3-dimensional analysis technique of temperature distribution in transformer using a commercial CFD program FLUENT and the applied results in a simple model.

  • PDF

A Study on the Oil Temperature Control Errors of Precision Oil Coolers (정밀 오일냉각기의 오일온도 제어오차에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.451-454
    • /
    • 2003
  • The Oil Coolers is very important unit for the stable thermal performance in machine tools, semiconductor equipments and high precision measuring systems. To select a proper oil cooler for the temperature control of core unit in a machine, not only cooling ability but also static and dynamic sensitivity of temperature sensors are considered. In this paper, the relationship between cooling ability and inflow oil temperature is identified. The cooling ability is increased with the increase of inflow oil temperature. The oil temperature control errors of a cooler are influenced by mainly sensitivity of temperature sensors and heating velocity in a machine. The validity of error cause analysis for temperature control is proved by real cooling experiments with inflow and outflow temperature sensors.

  • PDF

Correlative Changes between Photosynthetic Activities and Chlorophyll Fluorescence in Wheat Chloroplasts Exposed to High Temperature

  • Young-Nam Hong
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.37-42
    • /
    • 1994
  • Correlative changes between photosynthetic O2 exchange rates and room temperature Chl fluorescence were investigated in wheat (Triticum aestivum L.) chloroplasts treated with high temperature for 5 min. With increasing treatment temperature, photosynthetic O2 evolution rate mediated by PSII was decreased, showing 50% inhibition at 38$^{\circ}C$ (I50). But PSI activity measured by O2 uptake rates was stimulated as a function of increasing temperature. Dark level fluorescence (Fo)-temperature (T) analysis showed that fluorescence rising temperature (Tr), critical temperature (Tc), and peak temperature (Tp) was 38, 43, and 52$^{\circ}C$, respectively. Quenching analysis of Chl fluorescence showed that both the oxidized fraction of plastoquinone (qQ) and degree of thylakoid membrane energization (qNP) increased up to 4$0^{\circ}C$ and then declined dramatically. These results suggest that Tr is correlated with temperature showing a 50% of inhibition of photosynthesis and under mild high temperature stress, qNP is worth regarding as indicator for heat-induced damage of photosynthesis.

  • PDF