• Title/Summary/Keyword: Telecommunication system cooling

Search Result 19, Processing Time 0.029 seconds

Development of Thermal Design Program for an Electronic Telecommunication System Using Heat Sink (히트싱크를 이용한 전자통신 시스템의 방열설계 프로그램 개발)

  • Lee, Jung-Hwan;Kim, Jong-Man;Chun, Ji-Hwan;Bae, Chul-Ho;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.256-263
    • /
    • 2007
  • The purpose of this study is to investigate the cooling performance of heat sinks for an electronic telecommunication system by adequate natural convection. Heat generation rates of electronic components and the temperature distributions of heat sinks and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system a program is developed. The program used the graphic user interface environment to determine the arrangement of heat sources, interior fan capacity, and heat sink configuration. The simulation results showed that the heat sinks were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of $19^{\circ}C$. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared. The design program gave good prediction of the effects of various parameters involved in the design of a heat sinks for an electronic telecommunication system.

Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet (통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

Experimental study on the cooling characteristics of thermosyphon for the high power electronic components (고발열 전자부품 냉각용 써모사이폰의 냉각특성에 관한 연구)

  • 김광수;김원태;송규섭;이기백
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.137-146
    • /
    • 1998
  • The experimental study is concerned with two-phase closed thermosyphons, (i.e., wickless heat pipes) for the cooling of high power electronic components in telecommunication system. The thermosyphon which can deal with a high heat flux of up to $4.9W/cm^2$ is developed, and the cooling characteristics of thermosyphon is analyzed according to design parameters which are the types of and quantity of working fluid, number of pipes, wire insertion in pipe, inclination angle of thermosyphon, and cooling air velocity. Using water as working fluid is superior cooling performance compared to using acetone, and cooling performance is improved as the number of thermosyphon becomes larger, inserting wires in the pipes, and inclination of $30~60^{\circ}$.

  • PDF

A Study for Improving the Thermal Environment of Telecommunication Equipment Room -based on TDX-10, TDX-100, 5ESS-2000, PCM room- (통신장비실의 열환경 개선방안에 관한 연구 -TDX-10, TDX-100, 5ESS-2000, PCM실 중심으로-)

  • Cho, Chun-Sik;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.87-94
    • /
    • 2004
  • The purpose of this study is to improve thermal environment of telecommunication equipment rooms that hold TDX-10, TDX-100, 5ESS-2000, PCM of the latest telecommunication equipment. Analysis program is used the commercial CFD code, Star-CD and DOE-2.1E. The result has been compared by the energy consumption and the temperature contour at the 1 m height of room for each case. Different methods such as the relocation of the existing air-conditioner, the inflow of the ambient air into room, the installation of the forced fan and the cooling system equipment of the duct-connection type have been used to test for improvement of thermal environment. The analysis shows that most efficient method is the inflow of the ambient air into room but auxiliary equipment should be needed to prevent the local thermal spot.

A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

  • Le, T.D.;Kim, J.H.;Hyeon, C.J.;Kim, D.K.;Yoon, Y.S.;Lee, J.;Park, Y.G.;Jeon, H.;Quach, H.L.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.25-29
    • /
    • 2016
  • The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

A Study on Development of Liquid Cooled Plate for Cooling of a Communication Electronic Device with High Heat Generation (고발열 통신용 전자부품 냉각을 위한 고성능 수냉식 냉각판 개발에 관한 연구)

  • Chang, G.;Park, C.M.;Kim, E.P.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • 통신용 전자기기에서 대부분의 열은 증폭기에서 발생한다. 일반적으로 증폭기를 냉각하기 위하여 공랭식을 사용하여 발생하는 많은 열을 냉각하였다. 그러나 전통적인 방법은 고성능 콤팩트화 되어가는 추세에서 발열되는 열을 충분히 냉각하기는 부족하다. 본 논문은 고발열 전자부품 냉각을 위해서 수냉식 방법을 사용하였다. 열전달 효율을 높이기 위하여 냉각판에 직접 냉각수를 흐르게하여 접촉저항을 줄였다. 그리고 냉각판의 유로에 대한 배열과 유량의 비의 효과를 조사하였다. 연구를 수행한 결과, 다음과 같은 결론을 얻을 수 있었다. 냉각수 순환량이 $3{\iota}/min$인 경우, 유로 직경이 8 mm일 때의 냉각 성능이 10 mm일 때보다 우수한 것으로 나타났다. 냉각수 순환량이 $3{\iota}/min$인 경우, 유로 직경이 8 mm일 때의 발열 소자 표면 온도 분포가 더욱 안정적으로 나타났으며, 상하부에 설치된 발열 소자 표면 온도가 더 낮게 나타났다. 동일한 유로 직경의 냉각판에서, 열유속 증가에 따른 냉각수의 전열 성능 증가로 인해 전체 발열량의 증가율보다 발열 소자의 온도 증가율이 낮게 나타났다.

  • PDF

Development of Thermosyphon for Cooling of High Power Electronic Component in Telecommunication System (통신시스템의 고발열 부품 냉각용 써모사이폰 개발)

  • 한재섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.27-36
    • /
    • 1998
  • 통신시스템의 고발열 전자부품 냉각을 위해 3종류의 써모싸이폰을 각각의 용도에 따라 개 발하였으며 그 각각의 설계변수에 대한 냉각특성을 실험적으로 구하였다. TS-I에서는 증발부 내부 에 금속스크린 메쉬형심지를 삽입함으로써 시간에 따른 온도 변화를 작게 하여 냉각성능 안정성을 확보하였고, TS-II에서는 9W/cm2의 높은 냉각성능을 가진 루프형 써모사이폰을 개발하였으며 TS-III에서는 작동유체의 종류, 파이프개수 와이어 삽입여부등 써모사이폰의 주요 설계변수에 따 른 냉각특성을 구하였다.

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.