• Title/Summary/Keyword: Teflon

Search Result 527, Processing Time 0.03 seconds

Evaluation of softening ability of Xylene & Endosolv-R on three different epoxy resin based sealers within 1 to 2 minutes - an in vitro study

  • Shenoi, Pratima Ramakrishna;Badole, Gautam Pyarelal;Khode, Rajiv Tarachand
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Objectives: This study evaluated the efficacy of Endosolv-R and Xylene in softening epoxy resin based sealer after 1 to 2 min exposure. Materials and Methods: Sixty Teflon molds ($6mm{\times}1.5mm$ in inner diameter and depth) were equally divided into 3 groups of 20 each. AH 26 (Dentsply/De Trey), AH Plus (Dentsply/De Trey), Adseal (Meta-Biomed) were manipulated and placed in the molds allotted to each group and allowed to set at $37^{\circ}C$ in 100% humidity for 2 wk. Each group was further divided into 2 subgroups according to the solvents used, i.e. Xylene (Lobachemie) and Endosolv-R (Septodont). Specimens in each subgroup were exposed to respective solvents for 1 and 2 min and the corresponding Vicker's microhardness (HV) was assessed. Data was analysed by Mauchly's test and two-way analysis of variance (ANOVA) with repeated measures, and one-way ANOVA. Results: Initial hardness was significantly different among the three sealers with AH Plus having the greatest and Adseal having the least. After 2 min, Xylene softened AH Plus and Adseal sealer to 11% and 25% of their initial microhardness, respectively (p < 0.001), whereas AH 26 was least affected, maintaining 89.4% of its initial microhardness. After 2 min, Endosolv-R softened AH 26, AH Plus and Adseal to 12.7, 5.6 and 8.1% of their initial microhardness, respectively (p < 0.001). Conclusions: Endosolv-R was a significantly more effective short term softener for all the tested sealers after 2 min whereas Xylene was an effective short term softener against AH plus and Adseal but less effective against AH 26.

The polymerization efficiency of a bulk-fill composite based on matrix-modification technology

  • Elshazly, Tarek M.;Bourauel, Christoph;Aboushelib, Moustafa N.;Sherief, Dalia I.;El-Korashy, Dalia I.
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.32.1-32.12
    • /
    • 2020
  • Objectives: To evaluate the polymerization efficiency of a matrix-modified bulk-fill composite, and compare it to a conventional composite which has a similar filler system. The degree of conversion (DC%) and monomer elution were measured over different storage periods. Additionally, fillers' content was examined. Materials and Methods: Cylindrical specimens were prepared, in bulk and incrementally, from Filtek Bulk Fill (B) and Filtek Supreme XTE (S) composites using a Teflon mold, for each test (n = 6). Using attenuated total reflection method of Fourier transformation infrared spectroscopy, DC% was measured after 24 hours, 7 days, and 30 days. Using high-performance liquid chromatography, elution of hydroxyethyl methacrylate, triethylene glycol dimethacrylate, urethane dimethacrylate, and bisphenol-A glycidyl dimethacrylate was measured after 24 hours, 7 days and 30 days. Filler content was examined by scanning electron microscopy (SEM). Data were analyzed using 2-way mixed-model analysis of variance (α = 0.05). Results: There was no significant difference in DC% over different storage periods between B-bulk and S-incremental. Higher monomer elution was detected significantly from S than B. The elution quantity and rate varied significantly over storage periods and between different monomers. SEM images showed differences in fillers' sizes and agglomeration between both materials. Conclusions: Matrix-modified bulk-fill composites could be packed and cured in bulk with polymerization efficiency similar to conventional composites.

Influence of modeling agents on the surface properties of an esthetic nano-hybrid composite

  • Kutuk, Zeynep Bilge;Erden, Ecem;Aksahin, Damla Lara;Durak, Zeynep Elif;Dulda, Alp Can
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.13.1-13.10
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the influence of different modeling agents on the surface microhardness (Vickers hardness number; VHN), roughness (Ra), and color change (ΔE) of a nano-hybrid composite with or without exposure to discoloration by coffee. Materials and Methods: Sixty-four cylinder-shaped nano-hybrid composite specimens were prepared using a Teflon mold. The specimens' surfaces were prepared according to the following groups: group 1, no modeling agent; group 2, Modeling Liquid; group 3, a universal adhesive (G-Premio Bond); and group 4, the first step of a 2-step self-adhesive system (OptiBond XTR). Specimens were randomly allocated into 2 groups (n = 8) according to the storage medium (distilled water or coffee). VHN, Ra, and ΔE were measured at 24 hours, 1 week, and 6 weeks. The Kruskal-Wallis test followed by the Bonferroni correction for pairwise comparisons was used for statistical analysis (α = 0.05). Results: Storage time did not influence the VHN of the nano-hybrid composite in any group (p > 0.05). OptiBond XTR Primer application affected the VHN negatively in all investigated storage medium and time conditions (p < 0.05). Modeling Liquid application yielded improved Ra values for the specimens stored in coffee at each time point (p < 0.05). Modeling Liquid application was associated with the lowest ΔE values in all investigated storage medium and time conditions (p < 0.05). Conclusion: Different types of modeling agents could affect the surface properties and discoloration of nano-hybrid composites.

Titanate Nanotube Formation and Nanostructure Development from the Reaction of TiO2 Nanopowder and Alkalihydroxide (TiO2 나노분말과 수산화알칼리와의 반응으로부터 티탄산 나노튜브의 형성과 나노구조의 전개)

  • Jin, Eun-Ju;Riu, Doh-Hyung;Huh, Seung-Hun;Kim, Chang-Yeoul;Hwang, Hae-Jin
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 2008
  • [ $TiO_2$ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. $TiO_2$ nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. $TiO_2$ nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at $110^{\circ}C$ for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. $TiO_2$ nanotube was also obtained when the precursor was washed with other washing solutions such as $NH_4OH$, NaCl, $K_2SO_4$, and $Na_2SO_3$. Therefore, it was suggested that $Na^+$ ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of $TiO_2$ compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.

Experimental Study on Coating Corrosion Characteristics of Heat Exchanger for Sea Water (해수용 열교환기의 코팅 부식특성 실험연구)

  • Kwon, Young-Chul;Kim, Ki-Young;Huh, Cheol;Cho, Meang-Ik;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4117-4123
    • /
    • 2013
  • In the present study, coating corrosion characteristics of the heat exchanger for sea water are experimentally investigated. Coating types by a teflon, an electrodeposition and a ceramic+silicon were tested and compared with the corrosion characteristics of an aluminum. For the acceleration of corrosion by sea water, the temperature of sea water $70^{\circ}C$ and the concentration of salt 3.5% were considered. And the specimens were immersed in sea water during 9 weeks. Coating corrosion characteristics were measured by using the impedance method and SEM. Experimental results showed that polarization resistances obtained from Bode plot were related to the corrosion resistance of coating types, and the corrosion resistance of double coating were maintained during 4 weeks. From SEM photograph, we saw that blisters was generated on the interface between metal and coating.

Improvement of Band Pass Filter Using PBG and Aperture (Aperture와 PBG를 적용한 대역통과 여파기 성능개선에 관한 연구)

  • 이승재;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.847-852
    • /
    • 2003
  • Apertures and PBG(Photonic Band Gap) has been employed on the ground plane in the coupled line filter simultaneously. In order to observe the maximum bandwidth, we used the line gap 0.2mm which is can be made in our lab. Band-pass filter type is four-stage coupled strip line filter. Teflon has been used for the substrate ($\varepsilon$$\sub$r/=3.2). The center frequency and the bandwidth are 2.18GHz and 230MHz, respectively. The bandwidth is broaden from 230MHz to 310MHz (80Mhz, about 34.7%) by aperture effect and harmonic frequencies are suppressed to 20-30dB by PBG effect. So the harmonic frequencies have been suppressed by the PBG effect and the bandwidth are broaden by aperture effect.

Development of a New Radiotherapy Technique using the Quasi-Conformation Method (Quasi-Conformation 치료를 위한 새로운 방사선치료기술의 개발)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.343-350
    • /
    • 1991
  • The quasi-conformation therapy was performed to get a homogeneous dose distributions for irregeular shaped tumor lesion by using the arc moving beam and beam modifying filter which was made by cerrobend alloy($\rho$=9.4 g/cc) metal. In our dose calcuation programme, it was fundmentally based on Clarkson's method to calcuate the irregular multi-step block field in rotation therapy. In this study, the expected relative depth doses under multipartial attenuator agree well with measured data at same plane. The results of comparison the dose computation with that of TLD measurement are very closed within ${\pm}5\%$ uncertainties in the irradiation to phantom with quasi-comformation method. And it has shown that irregular typed multi-step filter can be applied to quasi-conformation therapy in high energy radiation plannings.

  • PDF

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF

Optimizing the Plasma Deposition Process Parameters of Antistiction Layers Using a DOE (Design of Experiment) (실험 계획법을 이용한 점착방지막용 플라즈마 증착 공정변수의 최적화 연구)

  • Cha Nam-Goo;Park Chang-Hwa;Cho Min-Soo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.705-710
    • /
    • 2005
  • NIL (nanoimprint lithography) technique has demonstrated a high potential for wafer size definition of nanometer as well as micrometer size patterns. During the replication process by NIL, the stiction between the stamp and the polymer is one of major problems. This stiction problem is moi·e important in small sized patterns. An antistiction layer prevents this stiction ana insures a clean demolding process. In this paper, we were using a TCP (transfer coupled plasma) equipment and $C_4F_8$ as a precursor to make a Teflon-like antistiction layer. This antistiction layer was deposited on a 6 inch silicon wafer to have nanometer scale thicknesses. The thickness of deposited antistiction layer was measured by ellipsometry. To optimize the process factor such as table height (TH), substrate temperature (ST), working pressure (WP) and plasma power (PP), we were using a design of experimental (DOE) method. The table of full factorial arrays was set by the 4 factors and 2 levels. Using this table, experiments were organized to achieve 2 responses such as deposition rate and non-uniformity. It was investigated that the main effects and interaction effects between parameters. Deposition rate was in proportion to table height, working pressure and plasma power. Non-uniformity was in proportion to substrate temperature and working pressure. Using a response optimization, we were able to get the optimized deposition condition at desired deposition rate and an experimental deposition rate showed similar results.

[ SnO2 ] Gas Sensors Using LTCC (Low Temperature Co-fired Ceramics) (LTCC 를 이용한 SnO2 가스 센서)

  • Cho, Pyeong-Seok;Kang, Chong-Yun;Kim, Sun-Jung;Kim, Jin-Sang;Yoon, Seok-Jin;Hieu, Nguyen Van;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2008
  • A sensor element array for combinatorial solution deposition research was fabricated using LTCC (Low-temperature Co-fired Ceramics). The designed LTCC was co-fired at $800^{\circ}C$ for 1 hour after lamination at $70^{\circ}C$ under 3000 psi for 30 minutes. $SnO_2$ sol was prepared by a hydrothermal method at $200^{\circ}C$ for 3 hours. Tin chloride and ammonium carbonate were used as raw materials and the ammonia solution was added to a Teflon jar. 20 droplets of $SnO_2$ sol were deposited onto a LTCC sensor element and this was heat treated at $600^{\circ}C$ for 5 hours. The gas sensitivity ($S\;=\;R_a/R_g$) values of the $SnO_2$ sensor and 0.04 wt% Pd-added $SnO_2$ sensor were measured. The 0.04 wt% Pd-added $SnO_2$ sensor showed higher sensitivity (S = 8.1) compared to the $SnO_2$ sensor (S = 5.95) to 200 ppm $CH_3COCH_3$ at $400^{\circ}C$.