• Title/Summary/Keyword: Tectonic province

Search Result 30, Processing Time 0.018 seconds

A Study on the Failure Characteristics for the Rock Slopes (Centering Around Jungang Highway) (암반사면의 붕괴특성에 관한 연구(중앙고속도로를 중심으로))

  • Kim, Jong-Ryeol;Lee, Jin-Su;Hwang, Pung-Ju;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.765-776
    • /
    • 2005
  • As a result of industrial advancement and land development, a number of highway slopes have been gradually formed and numerous problems related to their stability have been frequently caused. Generally, major factors for rock slope stability are lithology, slope inclination, slope height, degree of weathering, precipitation, condition of groundwater and so onl. Many complex factors are mostly involved in the collapse of rock slopes. In this study, a database for 94 collapsed Jungang highway slopes were set up using GIS program through literature search, site investigation, geological map and Korea tectonic province map. The analyses for the collapsed factor including sort of rock(by origin), tectonic province, highway direction, slope gradient and direction, degree of weathering, slope height were carried.

  • PDF

Seismic Characteristics of Tectonic Provinces of the Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • Lee, Kie-Hwa;Kim, Jung-Ki
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • The seismicity of the Korean Peninsula shows a very irregular pattern of strain release typical of the intraplate seismicity. The Korean Peninsula may be divided into several tectonic provinces of differing tectonics. In this analysis, seismicity parameters for each tectonic province are evaluated from historical as well as instrumental earthquake data of the Korean Peninsula to examine the differences in seismic characteristics among tectonic provinces. Statistical analysis of the earthquake data made of incomplete data before the Choseon Dynasty and complete data afterwards reveals that there exist no significant differences in seismic characteristics between the tectonic provinces. It turns out the b-value in the intensity-frequency relation for the whole peninsula is about 0.6 and the maximum earthquake is about MMI X. The results of this study may be used in the probabilistic seismic hazard analysis of the Korean Peninsula and in estimating the design earthquake in earthquake engineering.

  • PDF

Geological Structures of the Hadong Northern Anorthosite Complex and its surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 북부 회장암복합체와 그 주변지역의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 2012
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Hadong northern anorthosite complex (HNAC) and the Jirisan metamorphic rock complex (JMRC) and the Mesozoic granitoids which intrude them. Its tectonic frame is built into NS trend, unlike the general NE-trending tectonic frame of Korean Peninsula. This paper researched the structural characteristics at each deformation phase to clarify the geological structures associated with the NS-trending tectonic frame which was built in the HNAC and JMRC. The result indicates that the geological structures of this area were formed at least through three phases of deformation. (1) The $D_1$ deformation formed the $F_1$ sheath or "A"-type folds in the HNAC and JMRC, and the $S_{0-1}$ composite foliation and the $S_1$ foliation and the $D_1$ ductile shear zone which are (sub)parallel to the axial plane of $F_1$ fold, and the $L_1$ stretching lineation which is parallel to the $F_1$ fold axis owing to the large-scale top-to-the SE shearing on the $S_0$ foliation. (2) The $D_2$ deformation (re)folded the $D_1$ structural elements under the EW-trending tectonic compression environment, and formed the NS-trending $F_2$ open, tight, isoclinal, intrafolial folds with the $S_{0-1-2}$ composite foliation and the $S_2$ foliation and the $D_2$ ductile shear zone with S-C-C' structure and the $L_2$ stretching lineation which is (sub)parallel to the axial plane of $F_2$ fold. The extensive $D_2$ ductile shear zone (Hadong shear zone) of NS trend was persistently developed along the eastern boundary of HNAC and JMRC which would be to the limb of $F_2$ fold on a geological map scale. The Hadong shear zone is no less than 1.4 km width, and was formed in the mylonitization process which produced the mylonitic structure and the stretching lineation with the reduction of grain size during the $F_2$ passive folding. (3) The $D_3$ deformation formed the EW-trending $F_3$ kink or open fold under the NS-trending tectonic compression environment and partially rearranged the NS-trending pre-$D_3$ structural elements into (E)NE or (W)NW direction. The regional trend of $D_1$ tectonic frame before the $D_2$ deformation would be NE-SW unlike the present, and the NS-trending tectonic frame in the HNAC and JMRC like the present was formed by the rearrangement of the $D_1$ tectonic frame owing to the $F_2$ active and passive folding. Based on the main intrusion age of (N)NE-trending basic dyke in the study area, these three deformation events are interpreted to have occurred before the Late Paleozoic.

THE VOLCANO-TECTONIC SETTING OF THE EUNSAN GOLD DEPOSIT, SOUTH-WEST CHOLLA PROVINCE, KOREA

  • Reedman, A.J.
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.24-24
    • /
    • 2003
  • The Eunsan gold mine, together with similar nearby prospects, is situated near the centre of the ‘Wusuyeong’ 1:50000 Scale Geological Quadrangle, an area largely underlain by a thick sequence of non-marine Cretaceous strata. The sequence, several kilometres thick, comprises basaltic and andesitic lavas and tuffs, intercalated with fluvial and lacustrine sediments, passing upwards into a further thick volcanic sequence of predominantly dacitic and rhyolitic composition. (omitted)

  • PDF

Geochemical Characteristics of Volcanics from Yangsan, Kyeongnam Province (경남(慶南) 양산지역(梁山地域)에 분포(分布)하는 화산암류(火山岩類)의 지구화학적(地球化學的) 특성연구(特性硏究))

  • Kim, M.Y.;Shin, H.J.;Lee, P.K.;Jang, Y.N.
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.139-148
    • /
    • 1988
  • The altered volcanic rocks, ranging from tuffaceous to andesitic rocks are widely distributed around the "caldera" area in the southeastern part of Kyeongsang province. The volcanic activity and tectonic movement are assumed to be followed by the hydrothermal activities in the area. From the mineral assemblage the type of alteration can be divided into two types; propylitic and argillic. The average concentration of gold in hydrothermally altered rocks is somewhat lower (about 20 ppb) than that of fresh rocks (45-25 ppb), but for Ag, vice versa. During the hydrothermal process, the concentration of the trace elements Ag, Hg, Co, As, Hf, Sc, Si, Al increased, and that of Na, Rb, K, Au, Mg, Ca etc. decreased. The high anomalous contents of silver for altered rocks range from 4-7 ppm and 1-3 ppm for relatively fresh rocks.

  • PDF

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

A Study on the Geomorphology and Activity of Jinbu Fault in Pyeongchang-gun, Gangwon Province (강원도 평창군 진부 단층의 지형 및 활동성)

  • Lee, Gwang-Ryul;Cho, Young-Dong;Kim, Dae-Sik
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.775-790
    • /
    • 2008
  • This study shows possibility of active fault, throughout analyzing distributional features of tectonic and fluvial geomorphology and mineral composition of fault fracture clay, at Jinbu fault-line system in Pyeongchang-gun, Gangwon Province. Fault-line valley was formed remarkably in the upper reaches of Odae River and upper reaches of Yeongok River according along Jinbu fault-line. Landforms show rectilineal distribution at right shore slopes of Odae River in Ganpyeong-ri, southern zone of Jinbu fault-line system, related to the tectonic processes, such as triangular facet, kernbut, kerncol and alluvial fan. Fault fracture clay zones were developed at 5 outcrops($jbf1{\sim}5$), located in kerncol. Particularly, jbf1 fault outcrop, developed at granite saprolite, has obvious fault plane and fault clay composed of illite and laumontite. The Jinbu Fault-line along jbf4-2-3-5 may be formed by regional compressive stress, and jbf1 fault may be suggested a tributary fault of the Jinbu fault-line formed before the late Pleistocene. The vertical displacement of the east and west blocks of the Jinbu Fault-line is estimated in $0.024{\sim}0.027m/ka$.

Deformational Phased Structural Characteristics of the Hadong Southern Anorthosite Complex and its Surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 남부 회장암복합체와 그 주변지역의 변형단계별 구조적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.179-195
    • /
    • 2013
  • The study area, which is located in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of the Precambrian Hadong southern anorthosite complex (HSAC), the Jirisan metamorphic rock complex (JMRC) and Cretaceous sedimentary rock which unconformably covers them. Lithofacies distribution of the Precambrian constituent rocks mainly shows NS and partly NE trends. This paper researched deformational phased structural characteristics of HSAC and JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area was formed through at least three phases of ductile deformation. The first phase ($D_1$) of deformation happened due to the large-scale top-to-the SE shearing, and formed the sheath or "A"-type fold and the regional tectonic frame of NE trend in the HSAC and JMRC. The second phase ($D_2$) of deformation, like the $D_1$ deformation, regionally occurred under the EW-directed tectonic compression, and most of the NE-trending $D_1$ tectonic frame was reoriented into NS trend by the active and passive folding, and the persistent and extensive ductile shear zone (Hadong shear zone) with no less than 2.3~1.4 km width was formed along the eastern boundary of HSAC and JMRC through the mylonitization process. The third phase ($D_3$) of deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It means that the distribution of Precambrian lithofacies showing NE trend locally and NS trend widely in this area is closely associated with the $D_1$ and $D_2$ deformations, respectively, and the NS-trending Hadong shear zone in the eastern part of Hadong northern anorthosite complex, which is located in the north of Deokcheon River, also extends into the HSAC with continuity.

Geomorphological Processes of Fluvial Terraces at the River Basins in the East Coast in the Southern Taebaek Mountain Range (태백산맥 남부 동해안 하천 유역의 하안단구 지형 형성)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • This study estimates geomorphological processes of fluvial terraces by uplifts and bedrock features, by the analyses of topography, distribution, formation age and incision rate of fluvial terraces using Gwang-cheon River in Uljin, Namdae-cheon River in Pyeonghae and Osip-cheon River in Yeongdeok located in the southern Taebaek Mountain Range. The tectonic and climatic terraces I in the upper reaches of Gwang-cheon River with an altitude from riverbed of 9~12m indicate the formation age of MIS 2 with a incision rate of 0.40m/ka. However, the tectonic and climatic terraces I in the upper reaches of Osip-cheon River with an altitude from riverbed of 7~10m show the formation age of MIS 3 with an incision rate of 0.10m/ka. These results suggest that the uplift rate in the Gwang-cheon River basin is likely to be higher than that in the Osip-cheon River basin. Unlike the lower reaches of Osip-cheon River, the thalassostatic terraces are not found in the lower reaches of Gwang-cheon River, because the basin has low maintainable ability of landforms in river valley due to high uplift rate and bedrock properties resistant to weathering and erosion. On the other hand, the lowest tectonic and climatic terraces in the study areas indicate different formative ages and the terraces during the cooling stage in interglacial as well as during interstadial are also found. Therefore, this study suggests that chronological method for fluvial terrace by the previous developmental model of climatic terrace should be reconsidered.

  • PDF