DOI QR코드

DOI QR Code

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin (Can Vocational School, Canakkale Onsekizmart University) ;
  • Isik, Ercan (Department of Civil Engineering, Faculty of Engineering and Architecture, Bitlis Eren University) ;
  • Harirchian, Ehsan (Institute of Structural Mechanics (ISM), Bauhaus-Universitat Weimar)
  • Received : 2021.03.04
  • Accepted : 2021.04.01
  • Published : 2021.04.25

Abstract

Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

Keywords

References

  1. Ademovic, N., Hadzima-Nyarko, M. and Zagora, N. (2020), "Seismic vulnerability assessment of masonry buildings in Banja Luka and Sarajevo (Bosnia and Herzegovina) using the macroseismic model", Bull. Earthq. Eng., 18(8), 3897-393. doi:10.1007/s10518-020-00846-8.
  2. Akkar, S., Kale, O ., Yakut, A. and Ceken, U. (2018), "Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey", Bull. Earthq. Eng., 16(8), 3439-3463. http://doi.org/10.1007/s10518-017-0101-2.
  3. Almeida, A.A.D., Assumpcao, M., Bommer, J.J., Drouet, S., Riccomini, C. and Prates, C.L. (2019), "Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil", J. Seismol, 23(1), 1-23. https://doi.org/10.1007/s10950-020-09941-4
  4. Ambraseys, N.N. (1989), "Temporary seismic quiescence: SE Turkey", Geophys. J. Int, 96(2), 311-331. https://doi.org/10.1111/j.1365-246X.1989.tb04453.x.
  5. Anonymous-1 (2021), Historical Earthquakes, http://www.koeri.boun.edu.tr.
  6. Anonymous-2 (2021), Historical Earthquakes, https://deprem.afad.gov.tr.
  7. Aydemir, A., Ates, A., Bilim, F., Buyuksarac, A. and Bektas, O . (2014), "Evaluation of gravity and aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of the region surrounding Lake Van, Eastern Anatolia, Turkey", Surv Geophys, 35, 431-448. https://doi.org/10.1007/s10712-013-9258-7.
  8. Balan, S.F., Tiganescu, A., Apostol, B.F. and Danet, A. (2020), "Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance", Earthq. Struct., 17(4), 365-372. https://doi.org/10.12989/eas.2019.17.4.365.
  9. Bicen, V.S., Isik, E., Arkan, E. and Ulu, A.E. (2020), "A study on determination of regional earthquake risk distribution of masonry structures", J. Arch., Eng. Fine Arts, 2(2), 74-86.
  10. Bommer, J.J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., and Abrahamson, N.A. (2005), "On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis", Bull. Seismol. Soc. Am, 95(2), 377-389. http://dx.doi.org/10.1785/0120040073.
  11. Borcherdt, R.D. (2004), "A theoretical model for site coefficients in building code provisions", In Procs. 13th World Conference on Earthquake Engineering.
  12. Ceken, U., Dalyan, I., Kilic, N., Koksal, T.S. and Tekin, B.M. (2017), Turkiye Deprem Tehlike Haritalari Interaktif Web Uygulamasi. 4. In Proceedings of the International Earthquake Engineering and Seismology Conference, Bucharest, Romania.
  13. Cornell, C.A. (1968), "Engineering seismic risk analysis", Bull. Seismol. Soc. Am., 58(5), 1583-1606. https://doi.org/10.1785/BSSA0580051583
  14. DEMP (2020), https://tdth.afad.gov.tr/
  15. Dhont, D. and Chorowicz, J. (2006), "Review of the neotectonics of the Eastern Turkish-Armenian Plateau by geomorphic analysis of digital elevation model imagery", Int. J. Earth Sci., 95(1), 34-49. https://doi.org/10.1007/s00531-005-0020-3.
  16. Dogan, T.P., Kizilkula, T., Mohammadi, M., Erkan, I.H., Kabas, H. and Arslan, M.H. (2021), "A comparative study on the rapid seismic evaluation methods of reinforced concrete buildings", Int. J. Disaster Risk Red, 56, 102143. https://doi.org/10.1016/j.ijdrr.2021.102143.
  17. Ebrahimian, H., Jalayer, F., Forte, G., Convertito, V., Licata, V., d'Onofrio, A., Santo, A., Silvestri, F. and Manfredi, G. (2019), "Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy", Bull. Earthq. Eng., 17(9), 4743-4796. https://doi.org/10.1007/s10518-019-00678-1.
  18. Gregori, S.D. and Christiansen, R. (2018), "Seismic hazard analysis for central-western Argentina", Geod. Geodyn., 9(1), 25-33. https://doi.org/10.1016/j.geog.2017.07.006.
  19. Hadzima-Nyarko, M. and Kalman Sipos, T. (2017), "Insights from existing earthquake loss assessment research in Croatia", Earthq. Struct., 13(4), 365-375. https://doi.org/10.12989/eas.2017.13.4.401.
  20. Hadzima-Nyarko, M., Dragan M. and Spanic, M. (2014), "Spectral functions of RC frames using a new formula for Damage Index", Technical Gazette, 21(1), 163-171. https://hrcak.srce.hr/116589.
  21. Hadzima-Nyarko, M., Pavic, G. and Lesic, M. (2016), "Seismic vulnerability of older confined masonry buildings in Osijek, Croatia", Earthq. Struct., 11(4), 629-648. https://doi.org/10.12989/eas.2016.11.4.629.
  22. Horasan, G. and Boztepe-Guney, A. (2007), "Observation and analysis of low-frequency crustal earthquakes in Lake Van and its vicinity, Eastern Turkey", J. Seismol., 11(1), 1-13. https://doi.org/10.1007/s10950-006-9022-2.
  23. Idriss, I.M. (2014), "An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes", Earthq. Spect., 30, 1155-1177. https://doi:10.1193/070613EQS195M
  24. Iervolino, I., Giorgio, M. and Cito, P. (2019), "Which earthquakes are expected to exceed the design spectra?", Earthq. Spectra 35(3), 1465-1483, https://doi.org/10.1193/032318EQS066O.
  25. Inel, M. and Meral, E. (2016), "Seismic performance of RC buildings subjected to past earthquakes in Turkey", Earthq. Struct., 11(3), 483-503. http://dx.doi.org/10.12989/eas.2016.11.3.483.
  26. Isik, E. (2016), "Consistency of the rapid assessment method for reinforced concrete buildings", Earthq. Struct., 11(5), 873-885. https://doi.org/10.12989/eas.2016.11.5.873.
  27. Isik, E. and Kutanis, M. (2015), "Determination of local site-specific spectra using probabilistic seismic hazard analysis for Bitlis Province, Turkey", Earthq. Sci. Res. J, 19(2), 129-134. http://dx.doi.org/10.15446/esrj.v19n2.50101.
  28. Isik, E., Buyuksarac, A., Ekinci, Y.L., Aydin, M.C. and Harirchian, E. (2020), "The effect of site-specific design spectrum on earthquake-building parameters: a case study from the Marmara Region (NW Turkey)", Appl. Sci., 10(20), 7247. https://doi.org/10.3390/app10207247.
  29. Isik, E., Isik, M.F. and Bulbul, M.A. (2017), "Web based evaluation of earthquake damages for reinforced concrete buildings", Earthq. Struct., 13(4), 387-396. https://doi.org/10.12989/eas.2017.13.4.387.
  30. Isik, E., Kutanis, M. and Bal, I.E. (2016), "Displacement of the buildings according to site-specific earthquake spectra", Period Polytech-Civ, 60(1), 37-43. https://doi.org/10.3311/PPci.7661.
  31. Isik, E., Sagir, C., Tozlu, Z. and Ustaoglu, U .S. (2019), "Determination of Urban Earthquake Risk for Kirsehir, Turkey", Earthq. Sci. Res. J., 23(3), 237-247. http://doi.org/10.15446/esrj.v23n3.60255.
  32. Kadirioglu, F.T. and Kartal, R.F. (2016), "The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900-2012)", Turk. J. Earthq. Sci, 25(4), 300-310. https://doi.org/10.3906/yer-1511-7
  33. Kalafat, D., Gunes, Y., Kara, M., Deniz, P., Kekovali, K., Kuleli, H. S. and O zel, N. (2007), "A revised and extended earthquake catalogue for Turkey since 1900 (M≥4.0)", Bogazici University, Kandilli Rasathanesi ve Deprem Arastirma Enstitusu BebekIstanbul 553.
  34. Kalkan, E. and Gulkan, P. (2011), "Depreminin isiginda Van ve cevresi icin deprem hesabi parametrelerinin tayini", 2. Turkiye Deprem Muhendisligi ve Sismoloji Konferansi 25-27 Eylul 2013 Hatay, Turkiye.
  35. Khan, S., Waseem, M., Khan, M.A. and Ahmed, W. (2018), "Updated earthquake catalogue for seismic hazard analysis in Pakistan", J. Seismol, 22(4), 841-861. https://doi.org/10.1007/s10950-018-9736-y.
  36. Kocyigit, A. (2013), "New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey", J. Asian Earthq. Sci, 62, 586-605. https://doi.org/10.1016/j.jseaes.2012.11.008
  37. Kramer, S.L. (1996), "Seismic hazard analysis", Geotech. Earthq. Eng., 106-142.
  38. Kutanis, M., Ulutas, H. and Isik, E. (2018), "PSHA of Van province for performance assessment using spectrally matched strong ground motion records", J. Earthq. Syst. Sci., 127(7), 99. https://doi.org/10.1007/s12040-018-1004-6.
  39. Lahn, E. (1946), "A note about earthquakes in Van area (July-November 1945)", Maden Tetkik ve Arama ve Enstitusu, 1(35), 126-132.
  40. Mahsuli, M., Rahimi, H. and Bakhshi, A. (2019), "Probabilistic seismic hazard analysis of Iran using reliability methods", Bull. Earthq. Eng., 17(3), 1117-1143. https://doi.org/10.1007/s10518-018-0498-2.
  41. McGuire, R.K. (1995), "Probabilistic seismic hazard analysis and design earthquakes: closing the loop", Bull. Seismol. Soc. Am., 85(5), 1275-1284. https://doi.org/10.1785/BSSA0850051275
  42. McGuire, R.K. and Arabasz, W.J. (1990), "An introduction to probabilistic seismic hazard analysis", Geotech. Environ. Geophys., 1, 333-353. https://doi.org/10.1190/1.9781560802785.ch12.
  43. Moehle, J. and Deierlein, G.G. (2004), "A framework methodology for performance-based earthquake engineering", In 13th world conference on earthquake engineering.
  44. Ozturk, B., Balkis, N., Guven, K.C., Aksu, A., Gorgun, M., Unlu, S. and Hanilci, N. (2005), "Investigations on the Sediment of Lake VAN: II. Heavy metals, sulfur, hydrogen sulfide and Thiosulfuric acid S-(2-amino ethyl ester) contents", J. Black Sea/Mediterranean Environ., 11(1), 125-138.
  45. Pavic, G., Hadzima-Nyarko, M. and Bulajic, B. (2020), "A contribution to a UHS-based seismic risk assessment in Croatia-A case study for the city of Osijek", Sustain. Basel, 12(5), 1796. https://doi.org/10.3390/su12051796.
  46. PDRB (2019), The Principles of Determining Risky Buildings, Turkey Ministry of Environment and Urbanization Ankara, Turkey.
  47. Penarubia, H.C., Johnson, K.L., Styron, R.H., Bacolcol, T.C., Sevilla, W.I.G., Perez, J.S., Bonita, J.D., Narag, I.C., Solidum, R.U. Jr, Pagani, M.M. and Allen, T.I. (2020), "Probabilistic seismic hazard analysis model for the Philippines", Earthq. Spectra, 36(1_suppl), 44-68. https://doi.org/10.1177/8755293019900521.
  48. Rahman, M.Z., Siddiqua, S. and Kamal, A.M. (2020), "Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh", Nat, Hazards, 1-44. http://dx.doi.org/10.1007/s11069-020-04094-6.
  49. Scherbaum, F., Delavaud, E. and Riggelsen, C. (2009), "Model selection in seismic hazard analysis: An information-theoretic perspective", Bull. Seismol. Soc. Am., 99(6), 3234-3247. http://dx.doi.org/10.1785/0120080347.
  50. Selcuk, L., Selcuk, A.S. and Beyaz, T. (2010), "Probabilistic seismic hazard assessment for Lake Van basin, Turkey", Nat. Hazards, 54(3), 949-965. https://doi.org/10.1007/s11069-010-9517-6.
  51. Sengor, A.M.C., O zeren, S., Genc, T. and Zor, E. (2003), "East Anatolian high plateau as a mantle-supported, north-south shortened domal structure", Geophys. Res. Lett., 30(24). https://doi.org/10.1029/2003GL017858.
  52. Sezer, L.I. (2010), "Seismicity in the Van Seismotectonic Region", Aegean Geog J, 19(1), 67-84.
  53. Sipos, T.K. and Hadzima-Nyarko, M. (2017). "Rapid seismic risk assessment", Int. J. Disaster Risk Re., 24, 348-360. https://doi.org/10.1016/j.ijdrr.2017.06.025.
  54. Sipos, T.K. and Hadzima-Nyarko, M. (2018), "Seismic risk of Croatian cities based on building's vulnerability", Tehnicki vjesnik, 25(4), 1088-1094. https://doi.org/10.17559/TV20170516090159.
  55. Strukar, K., Sipos, T.K., Jelec, M. and Hadzima-Nyarko, M. (2019), "Efficient damage assessment for selected earthquake records based on spectral matching", Earthq. Struct., 17(3), 271-282. 282 https://doi.org/10.12989/eas.2019.17.3.271.
  56. Taymaz, T., Eyidogan, H. and Jackson, J. (1991), "Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey)", Geophys. J. Int., 106(3), 537-550. https://doi.org/10.1111/j.1365-246X.1991.tb06328.x.
  57. TBEC-2018 (2018), "Turkish Building Earthquake Code", T.C. Resmi Gazete; 30364 Ankara Turkey.
  58. Toker, M., Krastel, S., Demirel-Schlueter, F., Demirbag, E. and Imren, C. (2007), "Volcano-seismicity of Lake Van (Eastern Turkey), a comparative analysis of seismic reflection and three component velocity seismogram data and new insights into volcanic lake seismicity", In International Earthquake Symposium Kocaeli, 103-109.
  59. Utkucu, M. (2013a), "23 October 2011 Van, Eastern Anatolia, earthquake (M w 7.1) and seismotectonics of Lake Van area", J. Seismol., 17(2), 783-805. https://doi.org/10.1007/s10950-012-9354-z.
  60. Utkucu, M., Durmus, H., Yalcin, H., Budakoglu, E. and Isik, E. (2013), "Coulomb static stress changes before and after the 23 October 2011 Van, Eastern Turkey, earthquake (MW=7.1): implications for the earthquake hazard mitigation", Nat. Hazards Earth. Syst. Sci., 13(7), 1889. https://doi.org/10.5194/nhess-13-1889-2013.
  61. Xian, L., He, Z. and Ou, X. (2016), "Incorporation of collapse safety margin into direct earthquake loss estimate", Earthq. Struct., 10(2), 429-450. https://doi.org/10.12989/eas.2016.10.2.429.

Cited by

  1. Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance vol.4, pp.4, 2021, https://doi.org/10.3390/asi4040089