• Title/Summary/Keyword: Technology Transfer Agreement

Search Result 204, Processing Time 0.024 seconds

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

The Effects of Top and Bottom Lids on the Natural Convection Heat Transfer inside Vertical Cylinders (수직 원형관 내부에서 발생하는 자연대류 열전달에서 상·하단 마개의 영향)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.242-251
    • /
    • 2011
  • The effects of top and bottom lids on the natural convection heat transfer phenomena inside vertical cylinders were investigated experimentally for $Ra_{Lw}$ from $9.26{\times}10^9$ to $7.74{\times}10^{12}$. Using the concept of analogy between heat and mass transfer, a cupric acid-copper sulfate electroplating system was employed as mass transfer experiments replacing heat transfer experiments. The natural convection heat transfer of both-open cylinders in laminar and turbulent flows was in good agreement with the existing heat transfer correlations developed for vertical plates. The effects of top and bottom lids on the heat transfer rates were very similar to the studies of Krysa et al. and Sedahmed et al. and Chung et al. With the copper lids, the bottom-closed cavity showed the highest heat transfer rates and then followed both-closed, top-closed, both-open ones in both laminar and turbulent flows. However with the acryl lids, the similar trends were observed except that the heat transfer rates for both-open were higher than top-closed one. The use of the copper lids increased the heat transfer rates compared to the acryl lids due to the hydrodynamic interaction of the flows developed for the different heated faces. This study extended the ranges of flow conditions of the existing literatures and proposed the empirical correlations.

Effect of Twisted - Tape Tubulators on Heat Transfer and Flow Friction inside a Double Pipe Heat Exchanger

  • Phitakwinai, Sutida;Nilnont, Wanich;Thawichsri, Kosart
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 2015
  • Computational fluid dynamics (CFD) has been employed for the Heat exchanger efficiency of a counter flow heat exchanger. The Heat exchanger efficiency has been assessed by considering the computed Nusselt number and flow friction characteristics in the double pipes heat exchanger equipped with two types twisted-tapes: (1) single clockwise direction and (2) alternate clockwise and counterclockwise direction. Cold and hot water are used as working fluids in shell and tube side, respectively. Hot and cold water inlet mass flow rates ranging are between 0.04 and 0.25 kg/s, and 0.166 kg/s, respectively. The inlet hot and cold water temperatures are 54 and $30^{\circ}C$, respectively. The results obtained from the tube with twisted-tapes insert are compared with plain tube. Nusselt number and friction factor obtained by CFD simulations were compared with correlations available in the literature. The numerical results were found in good agreement with the results reported in literature.

Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region (초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

Experimental investigations and development of mathematical model to estimate drop diameter and jet length

  • Roy, Amitava;Suneel, G.;Gayen, J.K.;Ravi, K.V.;Grover, R.B.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3229-3235
    • /
    • 2021
  • The key process used in nuclear industries for the management of radiotoxicity associated with spent fuel in a closed fuel cycle is solvent extraction. An understanding of hydrodynamics and mass transfer is of primary importance for the design of mass transfer equipment used in solvent extraction processes. Understanding the interfacial phenomenon and the associated hydrodynamics of the liquid drops is essential for model-based design of mass transfer devices. In this work, the phenomenon of drop formation at the tip of a nozzle submerged in quiescent immiscible liquid phase is revisited. Previously reported force balance based models and empirical correlations are analyzed. Experiments are carried out to capture the process of drop formation using high-speed imaging technique. The images are digitally processed to measure the average drop diameter. A correlation based on the force balance model is proposed to estimate drop diameter and jet length. The average drop diameter obtained from the proposed model is in good agreement with experimental data with an average error of 6.3%. The developed model is applicable in both the necking as well as jetting regime and is validated for liquid-liquid systems having low, moderate and high interfacial tension.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics of Carbon Dioxide During Gas Cooling Process in a Hellically Coiled Tube

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yu, Tae-Geun;Kim, Dae-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.263-271
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during 9as cooling process of $CO_2$ (R744) in a helically coiled copper tube with the inner diameter of 4.55 mm and outer diameter of 6.35 mm were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter a pre-heater and a helically coiled type gas cooler (test section). The refrigerant mass fluxes are varied from 200 to $800kg/m^2s$ and the inlet pressures of gas cooler are 7.5 to 10.0 MPa. The heat transfer coefficients of $CO_2$ in a helically coiled tube are higher than those in a horizontal tube. The Pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those predicted by Ito's correlation developed for single-phase in a helically coiled tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However. at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al correlation. Therefore, various experiments in helically coiled tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in a helically coiled tube.

The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube (초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger (경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Jeon, Min-Ju;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

The Arrangement of Heaters for Rubber Injection Molds using FEM and Optimal Design Method (유한요소법과 최적설계 기법을 이용한 고무 사출 금형 히터 배치)

  • Kim, Myung-Hun;Han, Jeong-Young;Choi, Eun-Ho;Bae, Won-Byong;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Temperature control of a rubber injection mold is important for the dimensional accuracy of product. The main objective of this paper is to optimize the arrangement of heaters by FEM and optimal design method. Firstly, 3-dimensional transient heat transfer analysis was carried out for a square specimen mold. Results of FE analysis are a good agreement with the experimental results, showing about 1.22~7.22% error in temperature distribution. Secondly, we suggested the optimal method about an arrangement of heaters of rubber injection mold by using the optimal design technique. Distances between heater's center and the contact surface of mold, distances between heater's center and symmetric surface were considered as design variables. And the variances between the temperatures of cavity surfaces and their average temperature were used as the objective functions. Applying the optimal solution, the temperature variation was improved about 52.9~88.1 % compared to the existing mold. As a result of sensitivity analysis for design variables, design variables parallel to the direction of the split plane in mold affect the largest on the surface temperature variation in mold cavity.