• Title/Summary/Keyword: Technology Clustering

Search Result 1,161, Processing Time 0.042 seconds

A Study on a Technique for Simplifying the Connection of a 3D Model and Schedule Information for 4D Simulation (4D 시뮬레이션을 위한 3D 모델 및 공정 정보의 연계 간소화 기법 연구)

  • Park, Sang Mi;Lee, Jae Hee;Yoon, Hyeong Seok;Hwang, Jae Yoeng;Kang, Hyo Jeong;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.861-868
    • /
    • 2022
  • A key use of applying building information modeling (BIM) to the construction stage of a project is to help identify construction obstacles and to visualize construction status according to the progress of the construction schedule. When employing 4D simulation for this purpose, start and finish dates for each activity and a 3D model of the activity must be prepared. In this work, in order to simplify the configuration of a 4D model, minimum attribute information of the BIM model produced in the design stage was used to construct a system that generated activity information in the construction stage using a clustering algorithm. Its usefulness as actual schedule management information was then analyzed.

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment (주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구)

  • Chulsoon Park;Heungseob Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

The Proposal Method of ARINC-429 Linkage for Efficient Operation of Tactical Stations in P-3C Maritime Patrol Aircraft (P-3C 해상초계기용 전술컴퓨터의 효율적 운영을 위한 ARINC-429 연동 방법)

  • Byoung-Kug Kim;Yong-Hoon Cha
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.167-172
    • /
    • 2023
  • The P-3C maritime patrol aircraft operated by the Republic of Korea Navy is equipped with various sensor devices (LRUs, line replace units) for tactical data collection. Depending on the characteristics of the sensor device, it operates with various communication protocols such as IEEE 802.3, MIL-STD-1553A/B, and ARINC-429. In addition, the collected tactical data is processed in the tactical station for mission operators, and this tactical station constitutes a clustering network on Gigabit Ethernet and operates in a distributed processing method. For communication with the sensor device, a specific tactical station mounts a peripheral device (eg. ARINC-429 interface card). The problem is that the performance of the entire distributed processing according to the peripheral device control and communication relay of this specific device is degraded, and even the operation stop of the tactical station has a problem of disconnecting the communication with the related sensor device. In this paper, we propose a method to mount a separate gateway to solve this problem, and the validity of the proposed application is demonstrated through the operation result of this gateway.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

Design and Implentation of Body Fat Percentage Analysis Model using K-means and CNN (K-means와 CNN을 활용한 체지방율 분석 모델 설계 및 구현)

  • Lee, Taejun;Park, Chanmyeong;Kim, Changsu;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.329-331
    • /
    • 2021
  • Recently, as various cases of using deep learning in the health-care field are increasing, functions such as electrocardiogram examination and body composition analysis through wearable device can be provided to provide rational decision-making and a process tailored to the individual. In order to utilize deep learning, it it most important to secure refined data, and this data is being made through human intervention or unsupervised learning. In this paper, we propose a model that conducts unsupervised learning by clusters according to gender and age using human body data such as chest and waist circumferences, which are easy to measure, and classifies them with CNN. For data, the 7th human body data provided by Korean Agency for Technology and Standards was used. Through this, it it thought that it can be applied to various application cases such as personalized body shape management service and obesity analysis.

  • PDF

Experimental Studies on the Skin Barrier Improvement and Anti-inflammatory Activity based on a Bibliometric Network Map

  • Eunsoo Sohn;Sung Hyeok Kim;Chang Woo Ha;Sohee Jang;Jung Hun Choi;Hyo Yeon Son;Cheol-Joo Chae;Hyun Jung Koo;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.40-40
    • /
    • 2023
  • Atopic dermatitis is a chronic inflammatory skin diseases caused by skin barrier dysfunction. Allium victoralis var. Platyphyllum (AVP) is a perennial plant used as vegetable and herbal medicine. The purpose of this study was to suggest that AVP is a new cosmetic material by examining the effects of AVP on the skin barrier and inflammatory response. A bibliometric network analysis was performed through keyword co-occurrence analysis by extracting author keyword from 69 articles retrieved from SCOPUS. We noted the anti-inflammatory activity shown by the results of clustering and mapping from network visualization analysis using VOSviewer software tool. HPLC-UV analysis showed that AVP contains 0.12 ± 0.02 mg/g of chlorogenic acid and 0.10 ± 0.01 mg/g of gallic acid. AVP at 100 ㎍/mL was shown to increase the mRNA levels of filaggrin and involucrin related to skin barrier function by 1.50-fold and 1.43-fold, respectively. In the scratch assay, AVP at concentrations of 100 ㎍/mL and 200 ㎍/mL significantly increased the cell migration rate and narrowed the scratch area. In addition, AVP suppressed the increase of inflammation-related factors COX-2 and NO and decreased the release of β-hexosaminidase. This study suggests that AVP can be developed as a functional cosmetic material for atopy management through skin barrier protection effects, anti-inflammatory and anti-itch effects.

  • PDF

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

Efficient Sign Language Recognition and Classification Using African Buffalo Optimization Using Support Vector Machine System

  • Karthikeyan M. P.;Vu Cao Lam;Dac-Nhuong Le
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.8-16
    • /
    • 2024
  • Communication with the deaf has always been crucial. Deaf and hard-of-hearing persons can now express their thoughts and opinions to teachers through sign language, which has become a universal language and a very effective tool. This helps to improve their education. This facilitates and simplifies the referral procedure between them and the teachers. There are various bodily movements used in sign language, including those of arms, legs, and face. Pure expressiveness, proximity, and shared interests are examples of nonverbal physical communication that is distinct from gestures that convey a particular message. The meanings of gestures vary depending on your social or cultural background and are quite unique. Sign language prediction recognition is a highly popular and Research is ongoing in this area, and the SVM has shown value. Research in a number of fields where SVMs struggle has encouraged the development of numerous applications, such as SVM for enormous data sets, SVM for multi-classification, and SVM for unbalanced data sets.Without a precise diagnosis of the signs, right control measures cannot be applied when they are needed. One of the methods that is frequently utilized for the identification and categorization of sign languages is image processing. African Buffalo Optimization using Support Vector Machine (ABO+SVM) classification technology is used in this work to help identify and categorize peoples' sign languages. Segmentation by K-means clustering is used to first identify the sign region, after which color and texture features are extracted. The accuracy, sensitivity, Precision, specificity, and F1-score of the proposed system African Buffalo Optimization using Support Vector Machine (ABOSVM) are validated against the existing classifiers SVM, CNN, and PSO+ANN.

Change in the Gut Microbiota of Lactating Sows and Their Piglets by Inclusion of Dietary Spray-Dried Plasma in Sow Diets

  • Jeong Jae Lee;Hyunjin Kyoung;Jin Ho Cho;Kyeong Il Park;Yonghee Kim;Jinmu Ahn;Jeehwan Choe;Younghoon Kim;Hyeun Bum Kim;Minho Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.516-524
    • /
    • 2024
  • This study aimed to investigate the effects of dietary spray-dried plasma (SDP) on the gut microbiota of lactating sows and their piglets. A total of 12 sows were randomly assigned to one of two dietary treatment groups in a completely randomized design. The treatments were a sow diet based on corn and soybean meal (CON), and a CON diet with an added 1% SDP. The sows were fed the dietary treatments from d 30 before farrowing to weaning (d 28). The fecal samples of three sows from each treatment and two of their randomly selected piglets were collected to verify their fecal microbiota. There were no differences in the alpha diversity and distinct clustering of the microbial communities in the sows and their piglets when SDP was added to the sow diets from late gestation to weaning. The fecal microbiota of the lactating sows and their piglets showed a higher relative abundance of the phylum Bacteroidota and genus Lactobacillus and Ruminococcus and showed a lower relative abundance of the phylum Bacillota and genus Bacteroides, Escherichia/Shigella, and Clostridium in the sows fed the SDP diet than those fed the CON diet. Overall, these results show that the addition of SDP to the sow diet during lactation altered the gut environment with positive microbial composition changes. These results were similar in the nursing piglets, suggesting that the control of the sow diets during lactation may contribute to the intestinal health and growth in piglets after weaning.