Experimental Studies on the Skin Barrier Improvement and Anti-inflammatory Activity based on a Bibliometric Network Map

Eunsoo Sohn¹, Sung Hyeok Kim², Chang Woo Ha², Sohee Jang², Jung Hun Choi², Hyo Yeon Son³, Cheol-Joo Chae⁴, Hyun Jung Koo⁵ and Eun-Hwa Sohn^{6,7}*

¹Principal Researcher, Center for Global R&D Data Analysis, Korea Institute of Science and Technology Information, Seoul 02456, Korea

²Graduate Student and ⁶Professor, Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea

³CEO, Jingowon Farm Co., Ltd., Jinan 55444, Korea

⁴Professor, Department of General Education, Korea National University of Agriculture and Fisheries, Jeonju 54874, Korea

⁵Professor, Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Korea

⁷CEO, Truebelab Co., Ltd., Samcheok 25913, Korea

Atopic dermatitis is a chronic inflammatory skin diseases caused by skin barrier dysfunction. *Allium victoralis* var. Platyphyllum (AVP) is a perennial plant used as vegetable and herbal medicine. The purpose of this study was to suggest that AVP is a new cosmetic material by examining the effects of AVP on the skin barrier and inflammatory response. A bibliometric network analysis was performed through keyword co-occurrence analysis by extracting author keyword from 69 articles retrieved from SCOPUS. We noted the anti-inflammatory activity shown by the results of clustering and mapping from network visualization analysis using VOSviewer software tool. HPLC-UV analysis showed that AVP contains 0.12 ± 0.02 mg/g of chlorogenic acid and 0.10 ± 0.01 mg/g of gallic acid. AVP at $100 \, \mu \text{g/mL}$ was shown to increase the mRNA levels of filaggrin and involucrin related to skin barrier function by 1.50-fold and 1.43-fold, respectively. In the scratch assay, AVP at concentrations of $100 \, \mu \text{g/mL}$ and $200 \, \mu \text{g/mL}$ significantly increased the cell migration rate and narrowed the scratch area. In addition, AVP suppressed the increase of inflammation-related factors COX-2 and NO and decreased the release of β -hexosaminidase. This study suggests that AVP can be developed as a functional cosmetic material for atopy management through skin barrier protection effects, anti-inflammatory and anti-itch effects.

[This research was supported by Korea Institute of Science and Technology Information (KISTI) under the research program "Research on AI-based S&T Heterogeneous Data Analysis Model" and the Technology development Program of MSS [S3216587].]

*(Corresponding author) ehson@kangwon.ac.kr, Tel: +82-33-540-3322