• Title/Summary/Keyword: Technology Absorption Capacity

Search Result 267, Processing Time 0.024 seconds

A Study on The Relationship Between Technological Innovation, Technology Absorption Capacity, and Business Performance in Ship Parts Manufacturing (선박 부품 제조업의 기술혁신, 기술흡수역량과 경영성과 상호 간의 관계 연구)

  • Lee, Dong-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.617-629
    • /
    • 2022
  • This study empirically analyzed the mediating effect of technology absorption capacity in the relationship between technological innovation of ship parts manufacturing companies on business performance. Through this, it will be possible to provide implications for improvement plans for management strategy establishment related to technology development in the future. In order to achieve the purpose of this study, R&D, marketing, production·A total of 362 people working in manufacturing and finance/accounting departments were selected as subjects for this study. As a result of this study, it was found that technological innovation and technology absorption capacity of ship parts manufacturing companies have a positive (+) effect on business performance. The conclusion based on these research results is that the potential absorption capacity and realized absorption capacity constituting technology absorption capacity are judged to be the main key factors between technological innovation and management performance, such as continuous technological capacity accumulation. From a practical point of view, the ship parts manufacturing industry needs to focus on its ability to absorb smart parts process technology.

A Study on the relationship between dynamic capability & technology innovation performance

  • Lim, Heon-Jin;Park, Hyun-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.211-218
    • /
    • 2018
  • In this paper, we propose that investigating the relationship between the dynamic capacity and the technological innovation performance of firms. Based on the previous research, we divide the dynamic capacity into the adaptive capacity, absorption capacity, and productive capacity. Among the 3,400 companies responding to the technical statistics of SMEs in 2011, we performed multiple regression analysis with 2,807 except service industries. As a result, the absorptive capacity and productive capacity have a positive effect on the technological innovation performance at the 99% level, whereas the adaptive capacity has a negative effect on the technological innovation performance at the 95% level. The implications of this study are as follows. First, in order to improve the performance of technological innovation, it is important to strengthen the absorption capacity and productive capacity of companies. Absorption capacity shows that it is important to secure sufficient R & D manpower and R & D cost to utilize internal knowledge as well as to bring outside knowledge into the capacity to assimilate and utilize external knowledge. Second, the ability to commercialize a product is a capability to commercialize a technology that has succeeded in development, showing that the technology development organization must have the capability of post-development commercialization as well as technology development. Finally it shows the negative effect on adaptation capacity and innovation performance. Companies actively utilize external sources of information in order to respond to and adapt to the rapidly changing business environment. However, the results of this study show that a strategic approach is needed to use external sources of information and technology development resources. Especially as the use of external information resources and technology development resources increases.

Change of Hydriding Properties of Gravity Cast Mg-Ni Alloys with Ni Content (Ni 첨가량에 따른 중력 주조 Mg-Ni 합금의 수소화 반응 특성의 변화)

  • Yim, C.D.;Moon, Y.M.;You, B.S.;Na, Yeong-Sang;Bae, Jong-Su
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.250-256
    • /
    • 2004
  • Magnesium and its alloys have the high potential as hydrogen storage materials because of their highest hydrogen storage capacity, low density and abundant resources. But poor kinetic properties of hydriding and dehydriding and high working temperature have limited their practical applications. In this study, the Mg-Ni binary alloys with different amount of Ni were produced by gravity casting and characterized in order to investigate the relationship between the microstructures and hydriding properties. The maximum hydrogen absorption capacity decreased, but the absorption kinetics increased with Ni content. The difference in the absorption kinetics was resulted from the differences in the sort and shape of primary solid phases and eutectic microstructure.

CO2 Absorption Characteristics of Physical Solvent at High Pressure (고압에서 물리흡수제의 이산화탄소 흡수 특성 연구)

  • Eom, Yongseok;Kim, Eunae;Kim, Junhan;Chun, Sungnam;Lee, Jungbin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.334-339
    • /
    • 2013
  • In this study, as a candidate of the carbon dioxide ($CO_2$) absorbents, the mixture solution of polyethylene glycol dimethyl ether (PEGDME) and tetrahydrofuran (THF) were investigated. $CO_2$ absorption rate was measured by using high pressure $CO_2$ screening equipment in the range of 1 - 10wt% THF. Absorption capacity of the mixture solution was also estimated. Based on the results, we found that mixture solution containing THF had higher absorption rate and $CO_2$ loading capacity compared to PEGDME at $25^{\circ}C$.

Study on the Impact of IT Support on Organizational Performance through Absorption Capacity: Focusing on Organizational Temperance (IT 지원이 흡수역량을 통해 조직성과에 미치는 영향에 관한 연구 -조직의 절제 중심으로-)

  • Kwon, Jae-Hyeon;Seo, Young-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.73-81
    • /
    • 2020
  • This study demonstrated the effect of IT Ssupports for Iintegration Ccompetency(ITSIC) on organizational performance by using organizational temperance and absorption capacity as medium. The research model was verified with Smart PLS 3.0 based on the survey conducted overa total a total of of 126 pparticipantseople's surveys for the employees. First, the ITSIC had a positive effect on both the alignment and adaptability and also on absorption capacity. Second, it was confirmed that organizational temperance hads a positive effect on absorption capacity. Third, when the organizational temperance was mediated in the relationship between ITSIC and absorption capacity, it had a indicated a positive effect. Fourth, absorption capacity had a positive impact on organizational performance. The implications of this study differ from the existing studies through by validating validation of correlations correlations by extending IT technology and organizational performance to organizational ethical factors. In addition, it has been established that the ethical factors of the organization also act as leading factors of absorption capacity. ITSIC helps managers make balanced decision-making, which can contribute to improving absorption capacity by giving members a positive perception, ultimately having a positive impact on organizational performance. It suggests the importance of building appropriate IT infrastructure and cultivating organizational virtues in order to improve the performance of organizations in which absorption capacity is essential.

Energy Absorbing Control Characteristic of Al Thin-walled Tubes (AL 박육부재의 에너지 흡수 제어특성)

  • Yang, Yong-Jun;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The structural members must be designed to control characteristics of energy absorption for protecting passengers in a car accident. Study on collapse characteristics of structural member is currently conducted in parallel with other studies on effective energy absorption capacity of structural members with diverse cross-sectional shapes and various materials. This study concerns the crashworthiness of the widely used vehicle structural members, square thin-walled tubes, which are excellent in the point of the energy absorption capacity. The absorbed energy, mean collapse load and deformation mode were analyzed for side member which absorbs most of the collision energy. To predict and control the energy absorption, controller is designed in consideration of its influence on height, thickness and width ration in this study. The absorbed energy and mean collapse load of square tubes were increased by $15{\sim}20%$ in using the controller, and energy absorbing capability of the specimen was slightly changed by change of the high controller's height.

The Influences of LiBr Solution Recirculation in Absorber on the Absorption Chiller Performance (흡수기 용액 재순환이 흡수식 냉동기 성능에 미치는 영향)

  • Jeong, Jong-Su;Jin, Seong-Min;Park, Chan-U;Choe, Seung-Hak;Jeong, Bong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.733-741
    • /
    • 2002
  • If a part of the poor solution from the absorber outlet is recirculated to the absorber inlet, the solution temperature at the solution spray pump can be reduced, and the solution flow rate in the absorber is increased. We have performed the experiments on the influences of the absorption chiller performance according to the ratio of the recirculation, defined as the ratio of the recirculation flow rate to the total solution flow rate at the absorber outlet. As increasing the ratio of the recirculation, the absorption capacity of the solution can be deteriorated. On the other hand, due to the increasing flow rate, the heat transfer rate can be enhanced. As a result, the performance of the absorber and the cooling capacity of the absorption chiller have nothing to do with the recirculation ratio, and the lifetime of the spray pump will be maintained.

Heat Transfer Performance of Plate Type Absorber with Surfactant

  • Yoon, Jung-In;M. M. A. Sarker;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.243-251
    • /
    • 2004
  • Absorption chiller/heater can utilize the unused energy of the daily life waste heat, the industry waste heat. the solar energy and the earth energy. These can contribute to energy savings. But the absorption chiller/heater has a demerit that the size of absorption chiller/heater is larger than that of the vapor compression type based on same capacity. In this study. the experimental apparatus of an absorber is manufactured as a plate. which is newly applied in an absorber. The experimental apparatus is composed of a plate type absorber. which can increase the heat exchange area per unit volume and thus facilitating to deeply investigate more detail features instead of that done by the existing type. i.e.. horizontal tube bundle type. The characteristics of heat transfer and refrigeration capacity are studied experimentally. The absorption enhancement by using surfactant is closely examined through the experiment and comparative figures are presented in quantitative and qualitative analysis.

A study on out-of-plane strengthening of masonry-infilled wall (조적채움벽의 면외보강에 관한 연구)

  • Jang, Hye-Sook;Eun, Hee-Chang
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW, is experimentally verified. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is reported that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency.

Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete

  • Meraji, Leila;Afshin, Hasan;Abedi, Karim
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • This paper presents an investigation into the flexural behavior of reinforced concrete (RC) beams retrofitted by ultra-high performance fiber-reinforced concrete (UHPFRC) layers. The experimental study has been conducted in two parts. In the first part, four methods of retrofitting with UHPFRC layers in both the up and down sides of the beams have been proposed and their efficiency in the bonding of the normal concrete and ultra-high performance fiber-reinforced concrete has been discussed. The results showed that using the grooving method and the pre-casted UHPFRC layers in comparison with the sandblasting method and the cast-in-place UHPFRC layers leads to increase the load carrying capacity and the energy absorption capacity and causes high bond strength between two concretes. In the second part of the experimental study, the tests have been conducted on the beams with single UHPFRC layer in the down side and in the up side, using the effective retrofitting method chosen from the first part. The results are compared with those of non-retrofitted beam and the results of the first part of experimental study. The results showed that the retrofitted beam with two UHPFRC layers in the up and down sides has the highest energy absorption and load carrying capacity. A finite element analysis was applied to prediction the flexural behavior of the composite beams. A good agreement was achieved between the finite element and experimental results. Finally, a parametric study was carried out on full-scale retrofitted beams. The results indicated that in all retrofitted beams with UHPFRC in single and two sides, increasing of the UHPFRC layer thickness causes the load carrying capacity to be increased. Also, increases of the normal concrete compressive strength improved the cracking load of the beams.