• Title/Summary/Keyword: Technical Stability

Search Result 666, Processing Time 0.028 seconds

Effects of PVA and CMC addition on Rheological Characteristics and Curtain Stability of GCC Based Curtain Coating Colors (PVA와 CMC 첨가가 커튼 코팅용 GCC 도공액의 유변 특성 및 커튼 안정성에 미치는 영향)

  • Choi, Eun-Heui;Kim, Chae-Hoon;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.74-82
    • /
    • 2010
  • Curtain stability without curtain contraction is critical for a successful operation in curtain coating, and this can be influenced by the change in particle dynamics and rheological properties of coating colors. In this study, polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) were added to control the rheology of GCC based curtain coating colors. Surface tension was increased slightly with increasing content of cobinder. Shear-thinning of viscosity was more pronounced for the CMC containing GCC coating colors. Complex modulus decreased when small amount of PVA was used as a cobinder, but it increased in other coating colors. Extensional viscosity was increased with increasing of the cobinder content, but CMC was more effective. Results indicate that pigment interaction with PVA is different from that with CMC. Dispersibility of coating colors was improved due to steric stabilization when small amounts of PVA was used, but flocculation occurred by bridging when the amount of PVA was increased. Dispersibility of coating colors was improved when small amount of CMC was added, while flocculation was observed by depletion effect when the concentration of CMC was increased in coating colors. Addition of cobinders at proper levels gave positive effects both in rheological properties and curtain stability. On the other hand, excessive amount of cobinders caused particle flocculation and this resulted in rheological and curtain stablity problems.

Evaluation of Dewaxing and Strengthening Treatments for Stabilization of Aged Beeswax-treated Hanji (열화 밀랍지의 탈랍 및 강도보강 처리 안정성 평가)

  • Jeong, Hye Young;Go, In Hee;Nam, Hyun Ju;Choi, Kyoung Hwa
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.10-16
    • /
    • 2013
  • This study aims to carry out the final evaluation on the deterioration stability of dewaxing and strengthening treatments devised to conserve and restore the beeswax-treated volumes of the Annals of the Joseon Dynasty. Thus, this study artificially deteriorated dewaxed Hanji, strengthened Hanji and beeswax-treated Hanji with optimized processing conditions applied, and comparatively analyzed the deterioration characteristics of each kind of Hanji. As a result of this study, it turned out that there was the loss of physical strength and the value of $L^*$ was increased and the values of $a^*$ and $b^*$ were decreased from removing beeswax after dewaxing by supercritical fluid extraction (SFE). Also deteriorated strength during dewaxing was reinforced by strengthening treatment with methylcellulose and it showed higher strength than beeswax-treated Hanji. From the evaluation on deterioration stability after dewaxing and strengthening, it turned out that deterioration stability of strengthened Hanji is the superior. Therefore, it is presumed that conservation of aged beeswax-treated Hanji can be improved and extended when dewaxing and strengthening are applied under optimum conditions.

Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran

  • Azarafza, Mohammad;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.571-584
    • /
    • 2017
  • Slope mass rating (SMR) is commonly used for the geomechanical classification of rock masses in an attempt to evaluate the stability of slopes. SMR is calculated from the $RMR_{89-basic}$ (basic rock mass rating) and from the characteristic features of discontinuities, and may be applied to slope stability analysis as well as to slope support recommendations. This study attempts to utilize the SMR classification system for slope stability analysis and to investigate the engineering geological conditions of the slopes and the slope stability analysis of the Gas Flare site in phases 6, 7 and 8 of the South Pars Gas Complex in Assalouyeh, south of Iran. After studying a total of twelve slopes, the results of the SMR classification system indicated that three slope failure modes, namely, wedge, plane and mass failure were possible along the slopes. In addition, the stability analyses conducted by a number of computer programs indicated that three of the slopes were stable, three of the slopes were unstable and the remaining six slopes were categorized as 'needs attention'classes.

On the static and dynamic stability of beams with an axial piezoelectric actuation

  • Zehetner, C.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • The present contribution is concerned with the static and dynamic stability of a piezo-laminated Bernoulli-Euler beam subjected to an axial compressive force. Recently, an inconsistent derivation of the equations of motions of such a smart structural system has been presented in the literature, where it has been claimed, that an axial piezoelectric actuation can be used to control its stability. The main scope of the present paper is to show that this unfortunately is impossible. We present a consistent theory for composite beams in plane bending. Using an exact description of the kinematics of the beam axis, together with the Bernoulli-Euler assumptions, we obtain a single-layer theory capable of taking into account the effects of piezoelectric actuation and buckling. The assumption of an inextensible beam axis, which is frequently used in the literature, is discussed afterwards. We show that the cited inconsistent beam model is due to inadmissible mixing of the assumptions of an inextensible beam axis and a vanishing axial displacement, leading to the erroneous result that the stability might be enhanced by an axial piezoelectric actuation. Our analytical formulations for simply supported Bernoulli-Euler type beams are verified by means of three-dimensional finite element computations performed with ABAQUS.

Stability Estimation of NATM Tunnel due to Excavation using Back Analysis (역해석기법을 통한 NATM 터널의 안정성 평가)

  • Lee, Jae-Ho;Kim, Young-Su;Jin, Guang-Ril;Park, Jin-Kyu;Park, Si-Hyun;Choi, Chil-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.494-504
    • /
    • 2008
  • Successful design, construction and maintenance of NATM tunnel demands prediction, control, stability estimation and monitoring of surface settlement, gradient and ground displacement with high accuracy. Back analysis using measured data and forward analysis have been and are indispensable tools to achieve this goal. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the relation of critical strain and apparent Young's modulus. This paper performed the estimation of tunnel stability on construction. Firstly, the apparent Young's modulus concept and back analysis method is introduced for the assessment of tunnel safety during excavation a brief framework. Secondly, this paper deals with case study using "Apparent Young's modulus" and "Back analysis" for the purpose of estimating the stability of NATM tunnel in Korea. Finally, a general method that can be estimated the tunnel stability discussed by a flow chart.

  • PDF

Load Transfer Characteristics on Drilled Shafts by Hole Stability Fluids (공벽유지용 유체에 따른 대구경 현장타설말뚝의 하중전이특성)

  • Lim, Dae-Sung;Park, Seong-Wan;Park, Jung-Hwan;Oy, Se-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1100-1105
    • /
    • 2008
  • In most drilled shafts construction sites, it is common, depending on the site condition, to use either water or slurry as fluids for maintaining stability of the holes, however, there are yet no design manuals by hole stability fluids. In this paper, in order to evaluate load transfer characteristics of the drilled shafts by hole stability fluids, two test piles are constructed over the soft ground of the lower Busan Bay based on the Bi-directional Pile Load Test. The test results showed that no ultimate states has found under the condition of applied loads with fresh water and slurry as hole fluids for drilled shafts. Then, the load transfer behavior were estimated with the data measured in fields and the effect of hole stability fluids were compared. All these results are presented in the paper.

  • PDF

A METHOD FOR OPTIMUM LAYOUT DESIGN OF CONCRETE GRAVITY DAMS

  • A. Melih Yanmaz;Goktug Seckiner;Vehbi Ozaydin
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.199-207
    • /
    • 2001
  • A computer-assisted desktop is developed for layout design of a concrete gravity dam on the basis of safety and economy. Using a set of regression equations, a dam layout is proposed. With reference to the regression equations and relevant input data, overall dam dimensions are determined by satisfying the stability criteria jointly under usual, unusual, and extreme loading conditions with the desired hydraulic conformity. Among several feasible alternatives, the program enables a designer to select the optimum layout, which corresponds to the minimum total cost of the structure. The method is applied to a case study to examine dimensions of proposed alternatives and to compare them with those of an existing dam.

  • PDF

A Discrete-Time Nonlinear Robust Controller for Current Regulation in PMSM Drives

  • Turker, Turker;Yanik, Gurcan;Buyukkeles, Umit;Bakan, Faruk;Mese, Erkan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1537-1547
    • /
    • 2017
  • In this paper, a discrete-time robust current controller is proposed for PMSM drives. The structure of the proposed controller is quite simple and does not require high computational resource. The only difference of the proposed controller from the classical dead-beat controller is the integral term which can easily be implemented in a PMSM drive. The stability analysis of the proposed controller is performed accounting in parametric uncertainties, unmodelled dynamics and disturbances in the mathematical model. The boundedness of the dynamical system and asymptotic convergence of dq-axes currents to their reference values are provided under certain conditions. Various simulation and experimental studies are performed and the results taken at different operation conditions show the validity of the proposed controller.

Development of Drive System for a New MPB BLDC Motors (새로운 MPB BLDC 전동기용 구동장치 개발)

  • Kim, Sang-Uk;Lee, Yong-Geun;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.95-99
    • /
    • 2001
  • In this paper, a drive system for multi-phase bipolar brushless DC (MPB BLDC) motor is presented. This drive system is used for an electric bicycle. In general, the maximum and minimum speed of electric bicycle are required by law. At first, the proposed controller is satisfied for the limited speed control. Secondly, the system has a technique of exited with modulation(EWM), bidirection control, and partial square wave control. Thirdly, the controller is designed for system stability Experimental results show the performance of the proposed controller of MPB BLDC motors for an electric bicycle.

  • PDF

Rehabilitation of hospital buildings using passive control systems

  • Syrmakezis, C.A.;Mavrouli, O.A.;Antonopoulos, A.K.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.305-312
    • /
    • 2006
  • In the case of hospital buildings, where seismic design requirements are very high, existing structuresand especially those attacked by past earthquakes, appear, often, unable to fulfil the necessary safety prerequisites. In this paper, the retrofitting of hospital buildings is investigated, using alternative methods of repair and strengthening. Analysis of an existing hospital building in Patras, Greece, is performed. The load-bearing system is a reinforced concrete system. Two solutions are proposed: strengthening using concrete jackets around column and beam elements and application of viscoelastic dampers for the increase of the stability of the structure. Adequate finite element models are constructed for each case and conclusions are drawn on the efficiency of each rehabilitation method.