• 제목/요약/키워드: Technical Stability

검색결과 665건 처리시간 0.036초

Study on the mechanical properties and rheological model of an anchored rock mass under creep-fatigue loading

  • Song, Yang;Li, Yong qi
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.535-546
    • /
    • 2020
  • The stress environment of deep rock masses is complex. Under the action of earthquakes or blasting, the strength and stability of anchored rock masses in fracture zones or faults are affected. To explore the variation in anchored rock masses under creep-fatigue loading, shear creep comparative testing of anchored marble specimens with or without fatigue loading is performed. Considering the damage variable of rock under fatigue loading, a rheological model is established to characterize the whole shear creep process of anchored rock masses under creep-fatigue loading. The results show that (1) the overall deformation of marble under creep-fatigue loading is larger than that under only shear creep loading, and the average deformation is increased by 18.3%. (2) By comparing the creep curves with and without fatigue loading, the two curves basically coincide when the first level stress is applied, and the two curves are stable with the increase in stress level. The results show that the strain difference among the specimens increases gradually in the steady-state stage and reaches the maximum at the fourth level. (3) The shear creep is described by considering the creep mechanical properties of anchored rock masses under fatigue loading. The accuracy of this creep-fatigue model is verified by laboratory tests, and the applicability of the model is illustrated by the fitting parameter R2. The proposed model provides a theoretical basis for the study of anchored rock masses under low-frequency earthquakes or blasting and new methods for the stability and reinforcement of rock masses.

시뮬레이션 기반의 55마력급 서보식 정유압 무단변속기 정적구조안정성 분석 (Simulation Analysis on Static Safety of 55Hp-Servo-Based Hydrostatic Transmission)

  • 원종근;윤종일;이현아;정성교;정재수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.34-42
    • /
    • 2022
  • Hydrostatic transmission (HST) comprises rotary parts, shafts, valve plate, swashplate, and servo pistons. Ensuring structural stability of each part of an HST has a significant impact on product safety. In this study, the structural stability of HST in agricultural machinery and industrial vehicles was analyzed using ANSYS software. For conservative evaluation, high-pressure conditions (35.5 MPa and 2 MPa pilot pressure) were applied as load conditions. The number of grids used in the calculations ranged from 0.4 to 0.8 million depending on modeling requirements. Structural analysis was performed for essential parts and safety factor was analyzed. All major parts of HST had a safety factor of ≥ 1.5. Thus, they were judged to be structurally safe. This study provides important information for designing an HST system.

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성 (Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability)

  • 김은민;김성철;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.365-369
    • /
    • 2016
  • In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai;Zhiyong Jiang;Kuan-yu Chen;Duquan Zuo;Mostafa habibi;H. Elhosiny Ali;Ibrahim Albaijan
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.443-459
    • /
    • 2023
  • This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Dynamic Stability of a Cantilevered Timoshenko Beam on Partial Elastic Foundations Subjected to a Follower Force

  • Ryu, Bong-Jo;Shin, Kwang-Bok;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1355-1360
    • /
    • 2006
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented.

유전자 알고리즘을 이용한 사면의 임계파괴면 예측기법에 관한 연구 (A Study on the Prediction Technical for Critical Slip surface Using Genetic Algorithm)

  • 김홍택;강인규;황정순;장원호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.331-338
    • /
    • 1999
  • In the present study, a searching technique for critical slip surface in two dimensional slope stability analysis is proposed. The failure surface generation and analysis has been usually limited to simple geometric shapes. However, more random surfaces need to be examined for some particular ground conditions. For this purpose, random searching technique is developed using genetic algorithm. The generalized limit equilibrium method is employed as the method of stability analysis. Using this technique, the factor of safety is compared with the result by using simplified Bishop's method. In addition, the convergent trend of fitness value is analyzed.

  • PDF

케이슨 속채움재로서 동슬래그의 안정성 검토 (The Stability of Copper Slag in The Caisson Filling Material)

  • 노기만
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1370-1376
    • /
    • 2010
  • In this study, usability and stability in the caisson filling material were reviewed that copper salg(one million tons per one-year) were produced by smelter. In order to complete these studies, chemical and physical comparing analyses were performed by sea-sand materials as to the materials suitability, After construction, the structural displacement of caisson was measured by the instrument and was examined for stability. As a result of analysis, it was determined that copper slag is eco-friendly, and can be used as recycled alternative to aggregates materials.

  • PDF

발전설비를 위한 효과적인 자산관리기법 적용 (Application of Effective Asset Management for Power Generation)

  • 이성훈;김현일;장정호;이광호;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.163_164
    • /
    • 2009
  • Today, the power utilities is setting on the slow load growth and the aging of power equipment, then could spend the efforts on the stability of system performance. The asset management is separated by three parts of essential elements : management, engineering and information. The corporate of these parts should be practiced that seek to balance. Asset management is great way to fulfill the economic investment and the stability of system performance. This paper presents the application of effective asset management considering the economic evaluation for reasonable investment, technical evaluation for accurate control management and reliability evaluation for stability of operation.

  • PDF

STABILITY OF ZEROS OF POWER SERIES EQUATIONS

  • Wang, Zhihua;Dong, Xiuming;Rassias, Themistocles M.;Jung, Soon-Mo
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.77-82
    • /
    • 2014
  • We prove that if ${\mid}a_1{\mid}$ is large and ${\mid}a_0{\mid}$ is small enough, then every approximate zero of power series equation ${\sum}^{\infty}_{n=0}a_nx^n$=0 can be approximated by a true zero within a good error bound. Further, we obtain Hyers-Ulam stability of zeros of the polynomial equation of degree n, $a_nz^n$ + $a_{n-1}z^{n-1}$ + ${\cdots}$ + $a_1z$ + $a_0$ = 0 for a given integer n > 1.