• Title/Summary/Keyword: Technical Impact

Search Result 999, Processing Time 0.032 seconds

Thickness stretching and nonlinear hygro-thermo-mechanical loading effects on bending behavior of FG beams

  • Faicel, Khadraoui;Abderahmane, Menasria;Belgacem, Mamen;Abdelhakim, Bouhadra;Fouad, Bourada;Soumia, Benguediab;Kouider Halim, Benrahou;Mohamed, Benguediab;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.783-798
    • /
    • 2022
  • This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.

INFRASTRUCTURE RISK MANAGEMENT IN PREPAREDNESS OF EXTREME EVENTS

  • Eun Ho Oh;Abhijeet Deshmukh;Makarand Hastak
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.83-90
    • /
    • 2009
  • Natural disasters, such as the recent floods in the Midwest, Hurricane Ike in the Gulf coast region (U.S.), and the earthquake in Sichuan (China), cause severe damage to the infrastructure as well as the associated industries and communities that rely on the infrastructure. The estimated damages due to Hurricane Ike in 2008 were a staggering $27 billion, the third worst in U.S. history. In addition, the worst earthquake in three decades in Sichuan resulted in about 90,000 people dead or missing and $20 billion of the estimated loss. A common observation in the analyses of these natural disaster events is the inadequacy of critical infrastructure to withstand the forces of natural calamities and the lack of mitigation strategies when they occur on the part of emergency-related organizations, industries, and communities. If the emergency-related agencies could identify and fortify the vulnerable critical infrastructure in the preparedness stage, the damage and impacts can be significantly reduced. Therefore, it is important to develop a decision support system (DSS) for identifying region-specific mitigation strategies based on the inter-relationships between the infrastructure and associated industries and communities in the affected region. To establish effective mitigation strategies, relevant data were collected from the affected areas with respect to the technical, social, and economic impact levels. The data analysis facilitated identifying the major factors, such as vulnerability, criticality, and severity, for developing a DSS. Customized mitigation strategies that will help agencies prepare, respond, and recover according to the disaster response were suggested.

  • PDF

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai;Zhiyong Jiang;Kuan-yu Chen;Duquan Zuo;Mostafa habibi;H. Elhosiny Ali;Ibrahim Albaijan
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Measurement of missing video frames in NPP control room monitoring system using Kalman filter

  • Mrityunjay Chaubey;Lalit Kumar Singh;Manjari Gupta
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • Using the Kalman filtering technique, we propose a novel method for estimating the missing video frames to monitor the activities inside the control room of a nuclear power plant (NPP). The purpose of this study is to reinforce the existing security and safety procedures in the control room of an NPP. The NPP control room serves as the nervous system of the plant, with instrumentation and control systems used to monitor and control critical plant parameters. Because the safety and security of the NPP control room are critical, it must be monitored closely by security cameras in order to assess and reduce the onset of any incidents and accidents that could adversely impact the safety of the NPP. However, for a variety of technical and administrative reasons, continuous monitoring may be interrupted. Because of the interruption, one or more frames of the video may be distorted or missing, making it difficult to identify the activity during this time period. This could endanger overall safety. The demonstrated Kalman filter model estimates the value of the missing frame pixel-by-pixel using information from the frame that occurred in the video sequence before it and the frame that will occur in the video sequence after it. The results of the experiment provide evidence of the effectiveness of the algorithm.

Decision-making of sustainable municipal solid waste management based on the SWOT analysis: A case study of Gurugram City, Haryana (India)

  • Suman Chauhan;Sandeep
    • Advances in environmental research
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • In developing countries, solid waste is typically disposed of inappropriately, which has a negative impact on the environment and healthcare. One of the most serious environmental issues is the management of municipal solid waste because of the huge increase in waste generation brought on by industrialization, economic development, urbanization, and the exponential growth of Gurugram City's population. Municipal Corporation Gurugram (MCG) handles solid waste collection, transportation, and disposal. The city generates over 1100 tons of solid waste per day. In consideration of this, the current study employed the strengths, weaknesses, opportunities, and threats framework called SWOT analysis to critically examine the city's current methods for the management of municipal solid waste to provide more effective policy solutions. For conducting the analysis, the questionnaires and other interviews were conducted to gather information from households and officials in the city, and the observation made during field visits were recorded. The analysis shows that the waste management issue is getting worse for a variety of causes, including a lack of regulatory enforcement, insufficient technical and financial resources, insufficient people's participation, inadequate execution of policies, a lack of political priorities, and poor coordination between authorities.

Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)

  • Kim, Yusik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Vacuum-assisted air gap membrane distillation (V-AGMD) has the potential to achieve higher flux and productivity than conventional air gap membrane distillation (AGMD). Nevertheless, there is not much information on technical aspects of V-AGMD operation. Accordingly, this study aims to analyze the effect of membrane deformation on flux in V-AGMD operation. Experiments were carried out using a bench-scale V-AGMD system. Statistical models were applied to understand the flux behaviors. Statistical models based on MLR, GNN, and MLFNN techniques were developed to describe the experimental data. Results showed that the flux increased by up to 4 times with the application of vacuum in V-AGMD compared with conventional AGMD. The flux in both AGMD and V-AGMD is affected by the difference between the air gap pressure and the saturation pressure of water vapor, but their dependences were different. In V-AGMD, the membranes were found to be deformed due to the vacuum pressure because they were not fully supported by the spacer. As a result, the deformation reduced the effective air gap width. Nevertheless, the rejection and LEP were not changed even if the deformation occurred. The flux behaviors in V-AGMD were successfully interpreted by the GNN and MLFNN models. According to the model calculations, the relative impact of the membrane deformation ranges from 10.3% to 16.1%.

Feasibility Study of the Introduction of Hydrogen System and Plus DR on Campus MG

  • Woo, Gyuha;Park, Soojin;Yoon, Yongbeum
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • The renewable energy based MG is becoming one of the prominent solutions for greenhouse gas and constructing less power lines. However, how to procure the economics of MG considering the CO2 emission and utility network impact is one of major issues as the proportion of renewable resource increases. This paper proposes the feasibility study scheme of campus MG and shows that the LCOE and CO2 emission can be reduced by utilizing the excess power and introducing hydrogen system and plus DR. For this, the three cases: (a) adding the PV and selling excess power to utility, (b) producing and selling hydrogen using excess power, and (c) participating in plus DR are considered. For each case, not only the topology and component capacity of MG to secure economic feasibility, but also CO2 emission and utility network effects are derived. If an electrolyzer with a capacity of 400 kW participates in plus DR for 3,730hours/year, the economic feasibility is securable if plus DR settlement and hydrogen sale price are more than 7.08¢/kWh and 8.3USD/kg or 6.25¢/kWh and 8.6USD/kg, respectively. For this end, continuous technical development and policy support for hydrogen system and plus DR are required.

How Do Green Investment, Corporate Social Responsibility Disclosure, and Social Collaborative Initiatives Drive Firm's Distribution Performance?

  • PAMBUDI, Widiatmaka. F;DIAN, Wahdiana;Suherman, Suherman;LEONARDUS, Samodro Bintang A.M;Sukrisno, Sukrisno
    • Journal of Distribution Science
    • /
    • v.20 no.4
    • /
    • pp.51-63
    • /
    • 2022
  • Purposes: The purpose of this study is to develop and test a possible model that investigates the relationships between green investment, CSR disclosure, social collaboration initiatives, and firm distribution performance to deal with environmental change because it's become the major stakeholder since it affects increasingly global company performance index. Research methodology: In this study a quantitative method was adopted. The 220 respondents were owners and managers of manufacturing enterprises from Indonesia. The structural equation model (SEM) was used to test the hypotheses, and the Partial Least Square (SmartPLS) was used as the data analysis tool. Findings: The study's finding shows that green investment has a significant effect on CSR disclosure, and CSR disclosure has a positive relationship with social collaborative initiatives and the firm's distribution performance. Similarly, social collaborative initiatives also significantly impact a firm's distribution performance. Limitations: This study uses variables that are still abstract and have not been able to regress the dimensions contained there into conclusion variables for each antecedent variable. In addition, this study only used a sample with a small scope, namely Central Java Province, Indonesia. Contribution: The findings of this study contribute to the body of literature in the field of organizational management and support the agency and stakeholder theories. For the practical contribution, this study provides the way to build and implement green-based investment strategies as a competitive edge and improve firm's distribution performance.

A Study on the Development of Cabin Safety Learning Contents Using Virtual Reality Technology (VR) (가상현실 기술을 활용한 객실안전 학습 콘텐츠 개발 연구)

  • Ha-Young Kim;Jung-Hwa You
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.25-37
    • /
    • 2023
  • The purpose of this study is to develop and technically implement the design and scenario of cabin safety contents for virtual reality (VR)-based cabin safety learning for aviation service majors. The process for developing VR cabin safety learning contents consisted of a total of four stages: learning stage, research stage, verification stage, and application stage. The cabin safety scenario items for the production of VR learning contents reflected the occurrence of an emergency, the procedure for survival from impact, and the evacuation procedure from the aircraft as the core. For the technical implementation of learning contents, modeling work is conducted by checking scenario reviews, types and numbers of objects related to equipment and facilities, and items of interaction. In addition, the connection work with the actual metaverse platform is carried out to enable the utilization of the manufactured facilities and equipment objects. Finally, application tests were carried out to reconfirm supplementary items.

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.