• Title/Summary/Keyword: Team climate

Search Result 289, Processing Time 0.026 seconds

Analysis on the Water Circulation and Water Quality Improvement Effect of Low Impact Development Techniques by Test-Bed Monitoring (시범 단지 운영을 통한 LID 기법별 물순환 및 수질개선 효과 분석)

  • Ko, Hyugbae;Choi, Hanna;Lee, Yunkyu;Lee, Chaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2016
  • Low Impact Development (LID) techniques are eco-friendly storm water management process for water circulation restoration and non-point pollutant reduction. In this study, four LID techniques (Small constructed wetland, Infiltration trench box, Infiltration trench, Vegetated swale) were selected and installed as a real size at the real site. All facilities were evaluated as monitoring under the real environmental climate situation and an artificial rain with exceeding design rainfall. In various rainfall, runoff reduction efficiency and non-point pollutant removal efficiency are increased to the bigger Surface Area of LID (SA)/Catchment Area (CA) ratio and the bigger Storage Volume of LID (SV)/Catchment Area (CA) ratio. Runoff did not occur at all rainfall event (max. 17.2 mm) in infiltration trench and vegetated swale. But Small constructed wetland was more efficient at less than 10 mm, a efficiency of infiltration trench box was similar at different rainfall. Although different conditions (such as structural material of LID, rainfall flow rate, antecedent dry periods), LID techniques are good effects not only water circulation improvement but also water quality improvement.

Study of the Effects of Ambient Temperature and Car Heater Power on the Train Cabin Temperature (외기 온도와 난방 출력의 철도차량 객실 온도에 대한 영향 연구)

  • Cho, Youngmin;Park, Duck-Shin;Kwon, Soon-Bark;Jung, Woo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5877-5884
    • /
    • 2014
  • Recently, abnormally cold weather has been reported more frequently in winter due to the climate change and abnormal weather changes. On the other hand, the heating capacity of a railcar may be not enough to warm the cabin under severe cold climatic conditions, which is one of the reasons for the passengers' complaints about heating. In this study, the effects of ambient temperature and heater power on the cabin temperature was investigated to obtain the minimum ambient temperature for the tested railcar. The test railcar was placed in a large-climatic chamber, and various ambient temperature conditions were simulated. The effects of the heater output were investigated by monitoring the cabin temperature under a range of heater output conditions. The mean cabin temperature was $14.0^{\circ}C$, which was far lower than the required minimum temperature of $18^{\circ}C$, under a $-10^{\circ}C$ ambient temperature condition with the maximum heat power. When the ambient temperature was set to $0^{\circ}C$ and $10^{\circ}C$, the maximum achievable cabin temperature was $26.1^{\circ}C$ and $34.0^{\circ}C$. Through calculations using the interpolation method, the minimum ambient temperature to maintain an $18^{\circ}C$ cabin temperature was $-6.7^{\circ}C$ for this car. The vertical temperature difference was higher with a higher power output and higher ambient temperature. The maximum vertical temperature difference was higher than $10^{\circ}C$ in some cases. However, the horizontal temperature difference vs. low temperature (< $2^{\circ}C$) was independent of the power output and ambient temperature. As a result, it is very important to reduce the vertical temperature difference to achieve good heating performance.

Coverage Prediction for Aerial Relay Systems based on the Common Data Link using ITU Models (ITU 모델을 이용한 공용데이터링크 기반의 공중중계 시스템의 커버리지 예측)

  • Park, Jae-Soo;Song, Young-Hwan;Choi, Hyo-Gi;Yoon, Chang-Bae;Hwang, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • In this paper, we predicted the propagation loss for the air-to-ground (A2G) channel between the ground control system and the unmanned aerial vehicle (UAV) using the prediction model for the aircraft recommended by the International Telecommunication Union (ITU). We analyzed the network coverage of the aerial relay system based on the medium altitude UAVs by expanding it into the air-to-air (A2A) channel. Climate and geographic factors in Korea were used to predict propagation loss due to atmospheres. We used the measured data published by the Telecommunication Technology Association (TTA) for regional rainfall-rate and effective earth radius factors to increase accuracy. In addition, the aerial relay communication system used the key parameter of the common data link (CDL) system developed in Korea recently. Prediction results show that the network coverage of the aerial relay system broadens at higher altitude.

Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea (동계 광양만에서 식물플랑크톤 군집구조의 수평적 분포특성과 성장에 미치는 영양염 제한 특성)

  • Baek, Seung-Ho;Kim, Dong-Sun;Hyun, Bong-Gil;Choi, Hyun-Woo;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.99-111
    • /
    • 2011
  • To estimate the effects of limitation nutrients for phytoplankton growth and its influences on short-term variations of a winter phytoplankton community structure, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas from 6 to 7 February in Gwangyang Bay, Korea. Also, several algal bio-assay studies were conducted to identify any additional nutrient effects on phytoplankton assemblage using surface water for the assay. The dominant species in the bay was diatom Skeletonema costatum, which occupied more than 70% of total species in most stations (St.1-16) of the inner bay. According to a cluster and multidimensional scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western parts of Myodo lsland, which can be characterized as a semien-closed eutrophic area with high phytoplankton abundance. The second group included most stations from the north-eastern part of Myodo lsland, influenced indirectly by surface water currents from offshore of the bay. The standing phytoplankton crops were lower than those of the first group. The other cluster was restricted to samples collected from offshore of the bay. In the bay, silicon (Si) and phosphorus (P) were not a major limiting factor for phytoplankton production. However, since the DIN: DIP and DSi: DIN ratios clearly demonstrated that there were potential stoichiometric N limitations, nitrogen (N) was considered as a limiting factor. Based on the algal bio-assay, in vivo fluorescence values in N (+) added experiments were higher compared to control and P added experiments. Our results suggested that nitrogen may act as one of the most important factors in controlling primary production during winter in Gwangyang Bay.

DEVELOPMENT OF A LOCAL MEAN TEMPERATURE EQUATION FOR GPS-BASED PRECIPITABLE WATER VAPOR OVER THE KOREAN PENINSULA (GPS 가강수량 결정을 위한 한국형 평균온도식 개발)

  • Ha, Ji-Hyun;Park, Kwan-Dong;Heo, Bok-Haeng
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2006
  • The Bevis' mean temperature equation (MTE) is generally used in estimating Precipitable Water Vapor (PWV) based on GPS measurements. Because the equation was derived from Worth American meteorological data, however, it may induce errors in PWV if the equation is applied to Korea which has different climate conditions. In this study, we developed a new MTE using local meteorological data. We compared PWVs from the new equation with those from the Bevis and two other local equations. The PWV differences from the four equations increase as a function of surface temperatures at the observation site, reaching up to $1{\sim}3mm$.

Electron Microscopic Observation on the Decay of the Waterlogged Woods Excavated from Higokri, Pyungtaek (평택 희곡리 출토목재 부후형태의 전자현미경적 관찰)

  • Kim, Soo-Chul;Park, Won-Kyu
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.67-72
    • /
    • 2008
  • This study was conducted to examineboth the type of wood decay and the degree of degradation for the waterlogged woods (Alnus spp. and Fraxinus spp., about 5,700~5,900 year old), which were excavated at Higokri, Pyungteak in the west-coastal region of Korea. The transmission electron microscope (TEM) observation indicated the degradations by soft rot and bacteria were common in both woods. Erosion bacteria attacked gradually and irregularly from the secondary layer to compound middle lamella and often produced the cavity which was similar to soft-rot cavity but much smaller ones. Tunneling bacteria decomposed mainly $S_2$ layer. Though of highly degraded walls, the cells almost kept the original form with intact lignin-rich middle lamella, which were saturated by water. No marine borer's trace indicated that the sealine rise in the western coast of Korean peninsula during the climate optimum period in the holocene might not be high enough to submerge the Higokri area which locates about 2 km from the present sealine.

  • PDF

Numerical Study on the Change of PM10 Profile by Asian dust

  • Cho, Chang-Bum;Kim, Yoo-Keun;Lee, Yong-Seob;Bang, So-Young
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.533-539
    • /
    • 2007
  • The research was conducted to simulate and interpret the change of $PM_{10}$ profile by Asian dust using the CALPUFF modeling system for the period April 6 through 18, 2001. The results, which are represented a daily variation of $PM_{10}$ concentration before and after Asian dust, was located between a minimum concentration of $50{\mu}g/m^3$ and a maximum concentration of $100{\mu}g/m^3$, Most concentration peaks in the $PM_{10}$ profile were shown within a level below 500 m and had a pattern that rapidly increased up the peak and decreased after the peak to 1000 m. Even though the shapes of the vertical profile during Asian dust days were similar to non-Asian dust days, no rapid change vertically was observed. In particular, the vertical profile on 1200 LST and 1800 LST was noticeably shifted to the higher concentrations, which means $PM_{10}$ in the atmosphere was changed into a vertically and horizontally heterogeneous form under the Asian dust event. Finally, it is con-firmed that the simulation result from CALPUFF might schematically sketched atmospheric $PM_{10}$ profiles and their change by Asian dust throughout the comparison with profiles of aerosol extinction coefficients, which were acquired from Lidar measurement at KGAWO.

The Relationship between the Soil Seed Bank and Above-ground Vegetation in a Sandy Floodplain, South Korea

  • Cho, Hyung-Jin;Jin, Seung-Nam;Lee, Hyohyemi;Marrs, Rob H.;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.145-155
    • /
    • 2018
  • In a monsoonal climate, the soil seed bank can play an important role in plant regeneration after the severe annual floods that disturb above-ground vegetation within the riparian zone. To investigate the relationship between the soil seed bank and vegetation, we measured the species composition of the soil seed bank and the extant above-ground vegetation in six major plant communities (Artemisia selengensis, Miscanthus sacchariflorus, Persicaria nodosa, Phalaris arundinacea, Phragmites japonica, and Rorippa palustris) in the Cheongmicheon Stream, Korea. A total of 21 species germinated from the floodplain soil seed banks. The most diverse seed bank (21 species) was found in the A. selengensis community, wheres the lowest number of species was found in the R. palustris community (2 species). Most soil seed banks were composed of annuals (90%), exceptions being Rumex crispus and Artemisia princeps, which are perennial ruderals. The similarity of species composition between the soil seed bank and above-ground vegetation was low with Sorensen's similarity indices averaging 29% (range 12 - 42%). Crucially, existing dominant perennials of the extant vegetation including A. selengensis, M. sacchariflorus, P. japonica and P. arundinacea were absent from the soil seed bank. In conclusion, the soil seed banks of the floodplains of the Cheongmicheon Stream were mainly composed of viable seeds of ruderal plants, which could germinate rapidly after severe flood disturbance. The soil seed bank may, therefore, be useful for the restoration of the early succession stages of riparian vegetation after flood disturbances.

Analysis of Saturation Flow Rate on Interrupted Flow During Rainfall (강우시 단속류 포화교통류율 변화 분석)

  • Kim, Bongseok;Roh, Chang-Gyun;Son, Bongsoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.90-99
    • /
    • 2015
  • The climate of Korea has clear rainy and dry season due to seasonal wind. In general, The rainy season in Korea is from early summer through to early fall. And precipitation accounted for more than half of the total annual rainfall in this period. This study is aiming to analysis of variation in saturation flow rate at signalized intersection during rainfall. The range of spatial is urban signalized intersections in Seoul and temporal is rainfall or ideal condition in daylight. Traffic data are collected through CCTV of Seoul Metropolitan Police Agency, and on-site video recordings directly. Weather condition data are collected from the Korea Meteorological Administration. In addition, the value of saturation headway and saturation flow rate, in rainfall condition, are derived through video frame analysis. As a results of analysis, decrease of saturation flow rate and increase of saturation headway during rainfall were confirmed by comparison with non-rainfall. The higher rainfall rate is, the more decreased saturation flow rate at the intersections. Rainfall rate is divided three area by the results of statistical test, and saturation flow rate decrease 7%, 17%, 21%, respectively.

Characterizing Groundwater Discharge and Radon Concentration in Coastal Waters, Busan City (부산 해안지역의 물의 라돈 농도와 지하수 유출 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Lee, Yong-Woo;Cha, Eun-Jee;Kim, Sang-Hyun;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.53-66
    • /
    • 2011
  • Groundwater which infiltrated in recharge areas discharges in the forms of evapotranspiration, baseflow to streams, groundwater abstraction and eventually flows into the sea. This study characterized radon-222 concentration and electrical conductivity (EC) in coastal groundwater discharge, well groundwater, Ilkwang Stream water, and seawater in the coastal area of Busan Metropolitan City and subsequently estimated groundwater discharge rate to the sea. The median value of Rn-222 concentration is highest in well groundwater (18.36 Bq/L), and then decreases in the order of coastal groundwater discharge (15.92 Bq/L), Ilkwang Stream water (1.408 Bq/L), and seawater (0.030 Bq/L). The relationship between Rn-222 concentration and EC values is relatively strong in well groundwater and then in seawater. However, the relationship is not visible between coastal groundwater discharge and Ilkwang Stream water. The groundwater discharge rate to the sea is estimated as $3,130m^3$/day by using radon mass budget model and $16,788m^3$/day by using Darcy's law.