• Title/Summary/Keyword: Teaching Model

Search Result 1,741, Processing Time 0.027 seconds

The Identification and Comparison of Science Teaching Models and Development of Appropriate Science Teaching Models by Types of Contents and Activities (과학수업모형의 비교 분석 및 내용과 활동 유형에 따른 적정 과학수업모형의 고안)

  • Chung, Wan-Ho;Kwon, Jae-Sool;Choi, Byung-Soon;Jeong, Jin-Woo;Kim, Hyo-Nam;Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.1
    • /
    • pp.13-34
    • /
    • 1996
  • The purpose of this study is to develop appropriate science teaching models which can be applied effectively to relevant situations. Five science teaching models; cognitive conflict teaching models, generative teaching model, learning cycle teaching model, hypothesis verification teaching model and discovery teaching model, were identified from the existing models. The teaching models were modified and in primary and secondary students using a nonequivalent pretest-posttest control group design. Major findings of this study were as follows: 1. For teaching science concepts, three teaching models were found more effective; cognitive conflict teaching model, generative teaching model and discovery teaching model. 2. For teaching inquiry skills, two teaching models were found more effective; learning cycle teaching model and hypothesis verification teaching model. 3. For teaching scientific attitudes, two teaching models were found more effective; learning cycle teaching models and discovery teaching model. Each teaching model requires specific learning environment. It is strongly suggested that teachers should select a suitable teaching model carefully after evaluating the learning environment including teacher and student variables, learning objectives and curricular materials.

  • PDF

The Development of 4M Learning Cycle Teaching Model Based on the Integrated Mental Model Theory: Focusing on the Theoretical Basis & Development Procedure (통합적 정신모형 이론에 기반한 4M 순환학습 수업모형 개발: 이론적 배경과 개발과정을 중심으로)

  • Park, Ji-Yeon;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.5
    • /
    • pp.409-423
    • /
    • 2008
  • Many researches have reported that it is difficult to solve students' difficulties in learning science with teaching models focused on certain aspects because of various reasons. Recently, in science education research, the integrated perceptive has been to put emphasis on understanding complex situations of real teaching and learning. In this research context, the integrated mental model theory that were considered as a whole factor related to learning has been studied by integrating previous studies that related to students' conceptions and learning in various fields. Thus, it is needed that the teaching model be based on the integrated mental model theory to help students to solve their difficulties. The purpose of this research was to develop a new teaching model based on the integrated mental model theory to address this issue. We reviewed current studies on student difficulties and teaching models. After this, we developed 4M learning cycle teaching model. In this paper, we described the process of developing a new teaching model and discussed how to apply this teaching model to the practices. We also discussed the effects of 4M learning cycle teaching model based on the integrated mental model theory in learning science with its implications.

Development of Teaching Materials(CD-Rom) and Its Applications to Classroom in Area of Human Development and Family Relationship in Middle School Home Economics -Through Practical Reasoning Teaching Model- (중학교 가정과‘인간발달과 가족관계’영역의 교육자료(CD-Rom) 개발 및 현장 적용 연구 -실천적 추론 수업을 중심으로-)

  • 유태명;장혜경;유지연;김주연;김항아;김효순;신창중
    • Journal of Korean Home Economics Education Association
    • /
    • v.12 no.3
    • /
    • pp.115-127
    • /
    • 2000
  • The purpose of this study is to develop lesson plans. teaching guide, and teaching materials applying practical reasoning teaching model in the area of ’human development and family relationship’in middle school home economics. The practical reasoning teaching model consists of five factors: Desired results, Awareness of context, Alternative approaches, Consequences of action, and Action. This study based on practical reasoning has following process: Curriculum development. Developing lesson pan, teaching material, an teaching guide, Experimental teaching and evaluation. Feedback, Production of CD-Rom. Teaching guide includes lesson plan, workbook multimedia materials and teaching resources. Especially teaching guide in CD-Rom can be used effectively in the actual teaching. In the classroom, this teaching model accomplished active and interesting participation of teachers and students. It is proposed that practical reasoning teaching model should be applied to other areas of home economics. In addition various teaching materials based on practical reasoning need to developed.

  • PDF

Development of Teaching Model for Teaching Demonstration of Pre-service Fisheries and Marine School Teachers through Class Consulting (수해양계 예비교사의 수업시연을 위한 수업컨설팅 수업모형 개발)

  • KANG, Beodeul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.847-856
    • /
    • 2017
  • The purpose of this study was to develop a teaching model to improve teaching demonstration competence of pre-service Fisheries and Marine teachers through class consulting. The results were as follows: First, the results of a survey on perception of 19 pre-service teachers showed that most of them did not know exactly about the teaching demonstration. Second, a teaching model through class consulting was developed in four stages: Preparation for class, doing lesson, watching lesson, reflecting class. Third, the developed lessons model was applied for 6 weeks, but it was hard to expect much change just for 6 weeks. If discussions about the content of the lesson plan are haven during prior class consulting, this will be helpful for pre-service teachers in making the real teaching plan. The class performer have to write a report on class analysis because it is necessary to try systematic analysis on teaching demonstration.

The Comparative Study on the Effects of Three kinds of Teaching Model (Deductive, Inductive and Analogical Teaching Models) in Boiling Point Elevation (끓는점 오름의 학습에서 세 가지 수업모형의 효과 비교 - 연역식, 귀납식, 비유를 사용한 수업모형)

  • Kim, Do-Wook
    • Journal of The Korean Association For Science Education
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • The purpose of this study was to investigate the most effective teaching model in the study of boiling point elevation. The teaching models were classified into three group-deductive, inductive and analogical teaching models. Learning materials, based on three teaching models respectively, were applied to 11th grade students, and the effect of teaching models were investigated and analyzed. The average achievement score(4.24) of the group treated with the analogical teaching model was higher than those(3.06 respectively) of each group treated with inductive or deductive teaching model(p<0.001). Most students answered that the analogical teaching model was helpful and interesting one for the comprehension of scientific concept.

  • PDF

Development Method for Teaching-Learning Plan of Computer Education using Concrete Instructional Model Framework

  • Lee, Jaemu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.129-135
    • /
    • 2017
  • This research is to identify an easy and effective method of teaching-learning plan. The teaching-learning plan is a blue_print applied for designing effective lessons. However, most of the teachers regard it as a difficult and inefficient job. This study proposed the concrete instructional model framework as a tool to develop the teaching-learning plan easily and effectively. The concrete instructional model framework will represent a decomposed instructional strategy applied for each step of the instructional model developed by educational researchers. This method is applied to develop a computer teaching-learning plan. Therefore, the proposed method will expand an easier teaching-learning plan. Furthermore, the proposed method develops a teaching-learning plan with fluent content in detail based on low-level instruction strategies applied in the concrete instruction model framework.

Theoretical Analyses of Science Teaching Models (과학수업모형들의 특성에 관한 이론적 분석)

  • Kim, Han-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.2
    • /
    • pp.201-212
    • /
    • 1995
  • The purpose of this study was to analyze science teaching models: Cognitive Conflict Teaching Model(CCTM), Generative Learning Model(GLM), Learning Cycle Model(LCM), Hypothesis-Testing Model(HTM), and Discovery Teaching Model(DTM). Using literature review, the models were analyzed and compared in several aspects; philosophical and psychological bases, primary goals and assumptions, syntax, implementation environments, and probable effects. The major finding were as follows; 1. Science teaching models had been diverse features. In the comparisons of science teaching models, some differences and similarities were founded. These were different in the degree of similarity and emphasis. 2. CCTM and GLM resemble each other in philosophical and psychological bases, primary goals and main assumptions, implementation environments, and probable effects. 3. LCM and HTM showed similarities in philosophical bases, syntax, and implementation environments. But differences were founded in other aspects These results showed that the diverse features of science teaching models should be considered in choosing a model for science teaching.

  • PDF

A Study on the Development of a Teaching-learning Model for Active Learning in Engineering Education (공학교육에서의 Active Learning 교수-학습 모형 개발 연구)

  • Kim, Na-Young;Kang, Donghee
    • Journal of Engineering Education Research
    • /
    • v.22 no.6
    • /
    • pp.12-20
    • /
    • 2019
  • The purpose of this study is to development of a teaching-learning model for active learning in engineering education. For this, the adequacy between educational objectives and active learning activities is verified and furthermore an "active learning teaching-learning model" is suggested. This suggested teaching-learning model is expected to supplement weakness of traditional lecture-type teaching-learning activity. Based on the literature review, first, the representative activities of active learning were derived. there are twenty active learning activities, which compose of five of individual learning activity, five of pair-learning activity and five of group-learning activity, and five of alternative- learning activity. In addition, a survey on adequacy between designed active learning activities and learning outcomes were conducted to ten educational experts. Lawshe's content validity calculation method was applied to analyze the validity of this study. Second, five teaching-learning principles, such as thinking, interaction, expression, reflection, and evaluation were derived to develop an "active learning teaching-learning model" which supplements lecture-type classes and then the "TIERA teaching-learning model" which consists of five stages was designed. Finally, based on the survey on educational experts, adequate active learning activities were proposed to apply in each stage of the "TIERA teaching-learning model" and as a result the TIERA model's active learning activities were developed. The result of this study shows that some activities of active learning are appropriate to induce high cognitive learning skills from the learners even in traditional lecture-type classrooms and therefore this study suggests meaningful direction to new paradigm of teaching-learning for engineering education. This study also suggests that instructors of engineering education can turn their traditional teaching-learning activities into dynamic learning activities by utilizing "active learning teaching-learning model".

A Study on the Development of a Mathematics Teaching and Learning Model for Meta-Affects Activation (수학 교과에서 메타정의를 활성화하는 교수·학습 모델 개발)

  • Son, Bok Eun
    • East Asian mathematical journal
    • /
    • v.38 no.4
    • /
    • pp.497-516
    • /
    • 2022
  • In this study, we tried to devise a method to activate meta-affect in the aspect of supporting mathematics teaching and learning according to the need to find specific strategies and teaching and learning methods to activate learners' meta-affect in mathematics subjects, which are highly influenced by psychological factors. To this end, the definitional and conceptual elements of meta-affect which are the basis of this study, were identified from previous studies. Reflecting these factors, a teaching and learning model that activates meta-affect was devised, and a meta-affect activation strategy applied in the model was constructed. The mathematics teaching and learning model that activates meta-affect developed in this study was refined by verifying its suitability and convenience in the field through expert advice and application of actual mathematics classes. The developed model is meaningful in that it proposed a variety of practical teaching and learning methods that activate the meta-affect of learners in a mathematical learning situation.

Teaching Models for Scientific Inquiry Activity through the Nature of Science (NOS)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.7
    • /
    • pp.759-767
    • /
    • 2008
  • This article arose from the previous studies, which suggested a synthetic list for the nature of science (NOS), discussed the relationship between the NOS and scientific inquiry and the development of the NOS in the context of scientific inquiry. In this article, for teaching scientific inquiry through the NOS, I proposed three teaching models - reflection, interaction, and the direct model -. Within these teaching models, understanding the NOS is viewed as a prerequisite condition for the improved performance of scientific inquiry. In the reflection model, the NOS is embedded and reflected in scientific inquiry without explicit introduction or direct explanation of the NOS. In the interaction model, concrete interaction between scientific inquiry and the NOS is encouraged during the process of scientific inquiry. In the direct model, subsequent to directly comprehending the NOS at the first stage of activity, students conduct scientific inquiry based on their understanding of the NOS. The intention of this present article is to facilitate the use of these models to develop teaching materials for more authentic scientific inquiry.