• 제목/요약/키워드: Teacher Competencies

Search Result 168, Processing Time 0.024 seconds

The Effects of Chemistry Class Using Computer-Based Science Inquiry Program on Positive Experiences about Science, Science Core Competency, and Academic Achievement (컴퓨터 기반 과학 탐구 프로그램을 활용한 화학 수업이 과학 긍정경험, 과학과 핵심역량 및 학업성취도에 미치는 영향)

  • Kim, Sungki;Kim, Hyunjung
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.107-123
    • /
    • 2022
  • The purpose of this study is to investigate the effects of learning using computer-based science inquiry program. To this end, the three lessons computer-based science inquiry were developed in domain of material's properties. The developed program was put into K middle school located in Seoul and the effects were verified. For the experimental group, the three lessons computer-based science inquiry related to the separation of mixture were introduced, and for the comparison group, the contents presented in the textbook were introduced as a teacher-centered teaching method. To verify the effects of the program, 2-way ANCOVA was performed on positive experiences about science and science core competency, and 2-way ANOVA was performed on academic achievement. As a result of the study, there were significant differences between the two groups in positive experiernces about science and scientific core competencies and academic achievement (p<.05), and group*gender interaction effect was only significant in academic achievement (p<.05). From the results of this study, we could see the possibility of using a computer-based science inquiry program as a chemistry teaching method that enables sustainable scientific inquiry.

Exploring Teachers' Perceptions of Computational Thinking Embedded in Professional Development Program (컴퓨팅 사고를 반영한 교사연수 과정에서 나타난 교사의 인식 탐색)

  • Hwang, Gyu Jin;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.344-364
    • /
    • 2021
  • The study explored how two elementary school teachers perceived computational thinking, reflected them into curriculum revision, and taught them in the classroom during longitudinal professional developed program (PDP) for nine months. Computational thinking is a new direction in educational policy-making including science education; therefore we planned to investigate participating teachers' perception of computational thinking to provide their fundamental understandings. Nine meetings, lasting about two hours each, were held with the participating teachers and they developed 11 lesson plans for one unit each, as they formed new understandings about computational thinking. Data were collected through PDP program while two teachers started perceiving computational thinking, revising their curriculum, and implementing it into their class for nine months. The results were as follows; first, elementary school teachers' perception of computational thinking was that the definition of scientific literacy as the purpose of science education was extended, i.e., it refers to scientific literacy to prepare students to be creative problem solvers. Second, STEAM (science, technology, engineering, arts, and mathematics) lessons were divided into two stages; concept formation stage where scientific thinking is emphasized, and concept application, where computational thinking is emphasized. Thirdly, computational thinking is a cognitive thinking process, and ICT (informational and communications technology) is a functional tool. Fourth, computational thinking components appear repeatedly and may not be sequential. Finally, STEAM education can be improved by utilizing computational thinking. Based on this study, we imply that STEAM education can be activated by computational thinking when teachers are equipped with competencies of understanding and implementing computational thinking within the systematic PDPs, which is very essential for newly policies.

Science Teachers' Perceptions About Difficulties and Their Resolution in Science Teaching: Using KTOP (Korean Teaching Observation Protocol) Analysis (과학수업에서의 어려움과 해결방안에 대한 과학교사의 인식 -KTOP (Korean Teaching Observation Protocol) 분석을 이용하여-)

  • Haktae Kim;Jongwon Park
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.111-124
    • /
    • 2023
  • The aim of this study was to explore science teachers' perceptions of good science teaching. To this end, the Korean Teaching Observation Protocol (KTOP), which was developed for the purpose of observing and improving science teaching, was utilized. In the first survey, teachers were asked whether they thought each item in the KTOP was important for good science teaching, the extent to which they implemented these items, and the level of difficulty in implementing them. The second survey asked teachers what they believed to be the reasons and solutions for the KTOP items that they had responded as difficult to implement. The responses obtained from 63 teachers in the first survey and 35 teachers in the second survey were categorized based on the characteristics of the responses. The categorized contents were then summarized and discussed for their features. As a result, science teachers responded that all items in KTOP, except for one, are important for good science teaching. However, it was also shown that the level of execution was low in cases where implementation was difficult. For the 13 KTOP items that were considered important but difficult to implement and showed relatively low implementation level, many respondents (69%) attributed the reason to both students and teachers. However, the most common response (60%) was that the teacher should solve those difficulties. From this, it was found that understanding and supporting teachers, as well as enhancing their competencies, are more important for good science teaching than external factors. We hope that this research findings will help to better understand the specific difficulties that science teachers face in their classes and contribute to practical efforts that aim to address these challenges.

Development of checklist questions to measure AI core competencies of middle school students (중학생의 AI 핵심역량 측정을 위한 체크리스트 문항 개발)

  • Eun Chul Lee;JungSoo Han
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.49-55
    • /
    • 2024
  • This study was conducted with the purpose of developing a checklist of questions to measure middle school students' AI capabilities. To achieve the goal of the study, literature analysis and question development Delphi survey were used. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements are understanding of artificial intelligence (5 elements), artificial intelligence thinking (5 elements), utilization of artificial intelligence (4 elements), artificial intelligence ethics (6 elements), and artificial intelligence social-emotion (6 elements). elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 31 questions were developed. The developed questions were verified through the first Delphi survey, and 10 questions were revised according to the revision opinions. The validity of 31 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the level of reliability of measurement results increases.

The Development of 'Korea's Science Education Indicators' (한국의 과학교육 종합 지표 개발 연구)

  • Hong, Oksu;Kim, Dokyeong;Koh, Sooyung;Kang, Da Yeon
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.471-481
    • /
    • 2021
  • The importance of science education for cultivating the competencies required by an intelligent information society is gradually being strengthened. The government's roles and responsibilities for science education are stipulated by laws and policies in Korea. In order to systematically support science education, continuous monitoring of related policies is essential. This study aims to develop indicators that can be used to systematically and continuously monitor the national policies on science education in Korea. To achieve this goal, we first derive the framework for the indicators that has two dimensions (learner and science education context) and three categories (input, process, and outcome) from literature reviews. In order to derive the components and subcomponents of the indicators, the contents of science education-related indicators developed in Korea or abroad were reviewed. In order to verify the suitability and validity of the framework and components of the initial indicators, a two-round Delphi method was conducted with 25 expert participants with five different professions in science education. Finally, three components of the 'input' category (student characteristics, teacher characteristics, and educational infrastructure), three components of the 'process' category (science curriculum implementation, science educational contents and programs implementation, and teacher professional development program implementation), and five components of the 'outcome' category (science competency, participation and action, affective achievement, cognitive achievement, and satisfaction) were derived. An instrument to collect data from students, teachers, and institutions was developed based on the components and subcomponents, and content validity and internal consistency of the instrument were analyzed. Korea's Science Education Indicators developed in this study can comprehensively measure the current status of science education and is expected to contribute to a more efficient and effective science education policy planning and implementation.

A comparative analysis of Leadership Competency Education System in Korea, US and UK (한국·미국·영국의 유아교육기관 원장 리더십역량 교육체계 비교분석)

  • Park, Soo-Jin;Kim, Mi-Kyung
    • Korean Journal of Comparative Education
    • /
    • v.27 no.4
    • /
    • pp.255-283
    • /
    • 2017
  • The purpose of this study is to analyze the comtent of the education system of US and the UK in order to build an integrated system that can develop the leadership competency of preschool principle. Based on this, the implications are as follows. First, competencies can developed through learning rather than fixed. Therefore, re-conceptualization of leadership competence appropriate to the characteristics and organization of the individual as the presiding authority of the preschool can be considered as ability to show visible knowledge and skills, invisible self concept. Therefore, it is necessary to establish a capacity development plan based on this. Second, the introduction and implementation of continuous and systematic training programs such as the training system that strengthens the capacity of the directors and principals of the United States and the United Kingdom is necessary. To do this, we must introduce a system that renews certification every five years, like the United States, rather than a system that acquires and maintains certification with a single training. Third, various training methods should be carried out. In the case of the US and the UK, we think it is desirable to train in various ways in the training period, the university, the teacher center, and the private organization or association. Therefore, it is necessary to build a cooperation system with various institutions such as training institutes, universities, teacher centers, educational information research institutes, and private organizations in each province, and strengthen them in various ways. Fourth, the contents and methods of qualification training and future job training of the director of the preschool should be deviated from the uniform level. Therefore, the systematic research that reflects the knowledge and contents of the administration required in the field should be given priority by the university or research organization that is in charge of the training.

Survey of elementary school teachers' perceptions of the 2022 revised mathematics curriculum (2022 개정 수학과 교육과정에 대한 초등학교 교사들의 인식 조사)

  • Kwon, Jeom-rae
    • Education of Primary School Mathematics
    • /
    • v.27 no.2
    • /
    • pp.111-137
    • /
    • 2024
  • The purpose of this study is to identify the expected difficulties and necessary support when applying the 2022 revised mathematics curriculum to elementary schools, and to support the establishment of the field. To this end, we explored the major changes in the 2022 revised mathematics curriculum, and based on this, we conducted a survey of elementary school teachers to identify the expected difficulties and necessary support when applying it in the field. In particular, when analyzing the results, we also examined whether there were any differences in the expected difficulties and necessary support depending on the size of the school where it is located and the teaching experience of the teacher. The research results are as follows. First, the proportion of teachers who expect difficulties in applying the 2022 revised mathematics curriculum was mostly below 50%, but the proportion of teachers who demand support was much higher, at around 80%. Second, the difficulty of elementary school teachers in applying the 2022 revised mathematics curriculum was found to be the greatest in evaluation. Third, in relation to the use of edutech, teachers in elementary schools are also expected to have difficulties in teaching and learning methods to foster students' digital literacy, assessment using teaching materials or engineering tools, and assessment in online environments. Fourth, the difficulty of elementary school teachers in applying the 2022 revised mathematics curriculum was also significant in relation to mathematics subject competencies. Fifth, it was found that there is also difficulty in understanding the major changes of the achievement standards, including the addition, deletion, and adjustment of the achievement standards, and the impact on the learning of other achievement standards. Finally, the responses of elementary school teachers to the expected difficulties and necessary support in applying the 2022 revised mathematics curriculum did not differ depending on the size of the school where it is located, but statistically significant differences were found in a number of items depending on the teaching experience of the teacher. Based on these research results, we hope that various support will be provided for the 2022 revised mathematics curriculum, which will be applied annually from 2024.

Analyzing the Performance Expectations of the 2022 Revised Mathematics and Science Curriculum from a Data Visualization Competency Perspective (데이터 시각화 역량 관점에서 2022 개정 수학/과학 교육과정의 성취기준 분석)

  • Dong-Young Lee;Ae-Lyeong Park;Ju-Hee Jeong;Ju-Hyun Hwang;Youn-Kyeong Nam
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.2
    • /
    • pp.123-136
    • /
    • 2024
  • This study examines the performance expectations (PEs) and clarification statements of each PE in the 2022 revised national science and mathematics education standards from a data visualization competency perspective. First, the authors intensively reviewed data visualization literature to define key competencies and developed a framework comprising four main categories: collection and pre-processing skills, technical skills, thinking skills, and interaction skills. Based on the framework, the authors extracted a total of 191 mathematics and 230 science PEs from the 2022 revised science and mathematics education standards (Ministry of Education Ordinance No. 2022-33, Volumes 8 and 9) as the main data set. The analysis process consisted of three steps: first, the authors organized the data (421 PEs) by the four categories of the framework and four grade levels (3-4th, 5-6th, 7-9th, and 10th grade); second, the numbers of PEs in each grade level were standardized by the accomplishing period (1-3 years) of each PE depending on the grade level; lastly, the data set was represented by heatmaps to visualize the relationship between the four categories of visualization competency and four grade levels, and the differences between the competency categories and grade levels were quantitatively analyzed using the Mann-Whitney U test and independent sample Kruskal-Wallis tests. The analysis results revealed that in mathematics, there was no significant difference between the number of PEs by grade. However, on average, the number of PEs categorized in 'thinking skills' was significantly lower than those in the technical skills (p = .002) and interaction skills categories (p = .001). In science, it was observed that as grade level increased, PEs also increased (pairwise comparison: Grades 5-6 vs. 7-9, p = .001; Grades 5-6 vs. Grade 10, p = .029; Grades 3-4 vs. 7-9, p = .022). Particularly, the frequency of PEs in 'thinking skills' was significantly lower than in the other skills (pairwise comparison: technical skills p = .024; collection and pre-processing skills p = .012; interaction skills p = .010). Based on the results, two implications for revising national science and mathematics standards and teacher education were suggested.