DOI QR코드

DOI QR Code

The Development of 'Korea's Science Education Indicators'

한국의 과학교육 종합 지표 개발 연구

  • Hong, Oksu (Korea Foundation for the Advancement of Science & Creativity) ;
  • Kim, Dokyeong (Korea Foundation for the Advancement of Science & Creativity) ;
  • Koh, Sooyung (Korea Foundation for the Advancement of Science & Creativity) ;
  • Kang, Da Yeon (Seoul National University)
  • Received : 2021.11.22
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

The importance of science education for cultivating the competencies required by an intelligent information society is gradually being strengthened. The government's roles and responsibilities for science education are stipulated by laws and policies in Korea. In order to systematically support science education, continuous monitoring of related policies is essential. This study aims to develop indicators that can be used to systematically and continuously monitor the national policies on science education in Korea. To achieve this goal, we first derive the framework for the indicators that has two dimensions (learner and science education context) and three categories (input, process, and outcome) from literature reviews. In order to derive the components and subcomponents of the indicators, the contents of science education-related indicators developed in Korea or abroad were reviewed. In order to verify the suitability and validity of the framework and components of the initial indicators, a two-round Delphi method was conducted with 25 expert participants with five different professions in science education. Finally, three components of the 'input' category (student characteristics, teacher characteristics, and educational infrastructure), three components of the 'process' category (science curriculum implementation, science educational contents and programs implementation, and teacher professional development program implementation), and five components of the 'outcome' category (science competency, participation and action, affective achievement, cognitive achievement, and satisfaction) were derived. An instrument to collect data from students, teachers, and institutions was developed based on the components and subcomponents, and content validity and internal consistency of the instrument were analyzed. Korea's Science Education Indicators developed in this study can comprehensively measure the current status of science education and is expected to contribute to a more efficient and effective science education policy planning and implementation.

지능정보사회가 요구하는 역량 함양을 위해 과학교육의 중요성은 점차 강화되고 있으며, 과학교육에 대한 국가의 역할 및 책무성은 법으로 명시되어 있다. 과학교육을 효과적이고 효율적으로 지원하기 위해서는 관련 정책에 대한 지속적인 모니터링이 필수적이며, 이를 위해 과학교육의 현황을 종합적으로 분석하기 위한 지표 개발이 필요하다. 본 연구에서는 우리나라 과학교육 정책의 성과를 지속적이고 체계적으로 진단·점검할 수 있는 종합 지표를 개발하고자 하였다. 이를 위해 문헌연구를 토대로 '학습자'와 '과학교육 맥락'의 2개 차원과, '투입', '과정', '결과'의 3개 범주로 구성된 과학교육 종합 지표 체제를 도출하였으며, 국내외에서 개발된 과학교육 관련 지표의 내용을 검토하여 지표의 요소와 세부요소를 도출하였다. 이후 과학교육연구, 초·중등 현장교육, 과학교육정책, 교육과정, 과학기술 분야의 전문가 25인을 대상으로 총 2회에 걸친 델파이 조사를 실시하여 지표의 체제와 요소의 적합성과 타당성을 검증하였으며, 과학교육 종합지표의 조사대상 및 조사도구를 확정하였다. 연구 결과, '투입' 범주에 대해서는 '학생 특성', '교사 특성', '교육 인프라'의 3개 요소가 도출되었으며, '과정' 범주에 대해서는 '과학 교육과정 운영', '과학 콘텐츠 보급 및 프로그램 운영', '교사 전문성 신장 프로그램 운영'의 3개 요소가 도출되었고, '결과' 범주에 대해서는 '과학 역량', '참여와 실천', '정의적 성취', '인지적 성취', '만족도'의 5개 요소가 도출되었다. 또한 학생, 교사, 교육청/기관으로부터 데이터를 수집할 수 있는 조사도구를 개발하였으며, 문항양호도 및 신뢰도를 검증하였다. 본 연구에서 개발한 '과학교육 종합 지표'는 우리나라 과학교육의 여건, 성과, 인식 등을 종합적으로 측정할 수 있는 지표로서 보다 효율적이고 효과적인 과학교육 정책 수립 및 추진에 기여할 것으로 기대된다.

Keywords

References

  1. Ayre, C., & Scally, A. J. (2014). Critical values for Lawshe's content validity ratio: revisiting the original methods of calculation. Measurement and Evaluation in Counseling and Development, 47(1), 79-86. https://doi.org/10.1177/0748175613513808
  2. George, D., & Mallery, M. (2003). Using SPSS for Windows step by step: A simple guide and reference. Boston, MA: Allyn & Bacon.
  3. Godin, B. & Gingras, Y. (2000). What is scientific and technological culture and how is it measured? A multidimensional model. Public Understanding of Science, 9, 43-58. https://doi.org/10.1088/0963-6625/9/1/303
  4. Hong, O., Kim, D., Koh, S., & Kang, D. Y. (2021). Development of a comprehensive index for Korean science education. Seoul: KOFAC.
  5. Hsu, C., & Sandford, B. (2007). The delphi technique: making sense of consensus. practical assessment, research, and evaluation, 12(10), 1-8. https://doi.org/10.7275/pdz9-th90
  6. Kang, M., Lee, H., & Lee, C. (1988). A study on the systematization of educational indicators. Seoul: KEDI.
  7. Kim, G., Jung, D., Jung, H., & An, S. (2002). Special education indicators in Korea. Ansan: National Institute of Special Education
  8. Kim, J., Kim, K., Han, S., Im, S., & Park, J. (2004). A Study on the development of youth development indicators. Seoul: National Youth Policy Institute.
  9. Koo, N., Kim, M., Lee, S., Kwak, M., Kim, J., & Jung, T. (2021). 2020 National assessment of educational achievement: middle school. Jincheon: KICE.
  10. Korea Foundation for the Advancement of Science and Creativity (KOFAC). (2021). 2020 KOFAC science education data book. Seoul: KOFAC.
  11. Kwak, Y., Lee, H., Yoo, S., Shin, Y., Lee, I., Ha, J., Baek, J., & Son, H. (2019). Monitoring study on the implementaion of the 2015 national science curriculum in elementary and secondary schools. Seoul: KOFAC.
  12. Lee, J., & Jung, Y. (2006). Operation of career information center(2006): Development of career education indicators. Seoul: KRIVET.
  13. Ministry of Education (MOE). (2020). The master plan for science education (2020-2024). Sejong: Ministry of Education.
  14. National Academies of Sciences, Engineering, and Medicine (NASEM). (2021). Call to action for science education: building opportunity for the future. Washington, D.C.: The National Academies Press.
  15. Organisation for Economic Co-operation and Development (OECD). (2019). PISA 2018 assessment and analytical framework. Paris: OECD Publishing. https://doi.org/10.1787/b25efab8-en.
  16. Park, H. (2017). Challenges for program evaluation based on quality data. Korean Journal of Policy Analysis and Evaluation, 27(2), 169-199. http://dx.doi.org/10.23036/kapae
  17. Sang, K., Kim, K., Park, S., Jun, S., Park, M., & Lee, J. (2020). Trends in International Mathematics and Science Study: Analysis of the results of TIMSS 2019. Jincheon: KICE.
  18. Shin, Y., Kang, H., Kim, H., Nam, K., Lee, S., & Lee, S. (2016). Research on index of students' positive experiences about science (PES). Seoul: KOFAC.
  19. Song, J., Kang, S., Kwak, Y., Kim, D., Na, J., Do, J., Park, S., Son, Y., Son, J., Oh, P., Lee, J., Lee, H., Lhm, H., Jeong, D., & Joung, Y. (2019). Developing performance expectations, school implementation strategies, evaluation indicators of the Korean Science Education Standards (KSES) for the next generation. Seoul: KOFAC.
  20. Tak, J. (2007). Phychological testing: understanding the psychological test development and evaluation methods. 2nd ed. Seoul: Hakjisa.
  21. United Nations' Educational, Scientific and Cultural Organization (UNESCO) (2005). EFA global monitoring report 2005: education for All - the quality imperative. Retrieved from Right to Eduction website: https://www.right-to-education.org/resource/efa-global-monitoring-report-2005-education-all-%E2%80%93-quality-imperative.
  22. World Economic Forum (WEF) (2020). The future of jobs report. Retrieved from WEF website: http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf.
  23. You, J., Cheon, B., Shin, K., Lee, D., & Choi, S. (2020). Using administrative data for evidence-based policy research. Korea Social Policy Review, 27(1), 5-37. https://doi.org/10.17000/KSPR.27.1.202003.5