• Title/Summary/Keyword: Tc/TS cell

Search Result 5, Processing Time 0.02 seconds

An Experimental Study on Shear Strength of Saturated Sand (포화사(飽和砂)의 전단강도(剪斷强度)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Hyoung Soo;Park, Young Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.107-113
    • /
    • 1989
  • The purpose of this study is to compare the results of shear-deformation of saturated sand under the 3 dimensional stress with the results of simple torque-shear test already reported, Japaness standard sand, Toyoura sand, was chosen as test sample and the equipments of the department of soil mechancis laboratory of Nihon University were used. The conclusions obtained are as follows. 1). The friction angle of sand (${\phi}$) is proportional to the density regardless of the condition of stress-strain. This is because of the reason that the lower the cell pressure becomes, the larger the volume changes in case of the same density. 2). The value of ${\varphi}$ are variable according to the condition of stress-strain in the same density, and ${\phi}_dTS$ is larger than ${\phi}_dPS$ and ${\phi}_dTC$ when cell pressure is low. 3). ${\phi}_dPS$ is larger then ${\phi}_dTS$, under the same denstiy and same cell pressure. Thus the shear strength of sand is decided according to the condition of stress-strain 4). the relationship between the stress ratio (q/p) and strain increment ration in the plane strain test is linear regardless of the density and the cell pressure of the test sample.

  • PDF

A Study of Self-Sealing Rubber Material Using Foamed Natural Rubber (NR 발포를 사용한 자기 밀폐형 고무 재료의 연구)

  • Kim, Do-Hyun;Kim, Hyun-Mook;Lee, Chang-Seop;Ahn, Won-Sool;Kim, Joon-Hyung
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.88-96
    • /
    • 2006
  • The self-sealing rubber material for a fuel cell which has self-sealing ability, in case of fuel leakage, was studied. Cure characteristics, density, swelling, and surface morphology of foamed natural rubber were investigated with carbon black and with processing oil within the range of $10{\sim}30phr$. The rheological properties indicated that the value of $ts_2$ and the value of $Tc_{90}$ were increased with increasing a content of processing oil, while carbon black did not show a similar trend. A difference in density by foaming was decreased to one fifth scale compared to the initial value. According to the swelling test of foamed natural rubber in fuel C, isooctane and toluene, all the self-sealing action was finished in two minutes. From the SEM image for the surface of rubber compounding, a foaming by sodium bicarbonate was found to be unequal and consecutive foaming cell.

Effect of Keratinocyte Derived Exosome on Proliferation and Migration on Human Skin Keratinocyte (각질형성세포 유래 엑소좀이 피부각질형성세포의 증식과 이주에 미치는 영향)

  • Kim, Do Yoon;Yu, Ho Jin;Hwang, Dae Il;Jang, Sang Hee;Lee, Hwan Myung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.359-366
    • /
    • 2016
  • Exosome, a small vesicle secreted from cells, has diverse functions depending on cell origins and tissue types and plays a important role in cell viability and intercellular communication. Recently, many researchers have demonstrated the use of exosomes for the treatment of cancers and immune diseases, and the development of diagnostic biomarker. However, the secretion mechanism of exosome from skin cell and its physiological functions in skin remain unclear. Thus, this study aimed to explore whether keratinocyte-derived exosome affects proliferation and migration in HaCaTs. Exosomes were isolated from HaCaTs by ExoQuick-TC and then boiled or unbolied. Boiled and unboiled exosome induced proliferation in HaCaTs in a dose-dependant manner ($0.1{\sim}20{\mu}g/mL$), respectively. Boiled and unboiled exosome at concentration of $20{\mu}g/mL$ increased proliferation level in HaCaTs by $186.96{\pm}3.87%$ and $193.48{\pm}10.48%$ compared with control group. Unboiled exosome stimulated migration in HaCaTs in a dose-dependent manner ($0.1{\sim}20{\mu}g/mL$), which reached a maxium at concentration of $20{\mu}g/mL$ ($179.39{\pm}4.89%$ of control), but boiled exosome did not affect HaCaT migration. In addition, unboiled exosome ($0.1{\sim}20{\mu}g/mL$) dose-dependently stimulated sprout outgrowth in HaCats. These results demonstrate that in exosome from HaCaTs, heat-stable components such as lipid may induce HaCaT proliferation and heat-unstable components such as protein may stimulate migration and sprout outgrowth in HaCaTs, thereby leading to reepithelialization and skin-wound healing activities. It is concluded that exosomes from HaCaTs may be used as cosmetic materials.

The effect of Asparagi Tuber on Anti-cancer and Immunocytes (천문동(天門冬)이 항암(抗癌) 및 면역세포(免疫細胞)에 미치는 영향(影響))

  • Jeong, Hyun Woo;Cho, Young-Lim
    • Herbal Formula Science
    • /
    • v.5 no.1
    • /
    • pp.169-178
    • /
    • 1997
  • To investigate effect of water extract of Asparagi Tuber(天門冬) on human cancer cell-lines and immunocytes, this research estimated proliferation of A431 cell line, KHOS-NP cell line, mouse thymocytes and mouse splenocytes, Nitric Oxide(NO) from macrophage, apoptosis and subpopulation of the mouse thymocytes. The result were obtained as follows ; 1. Asparagi Tuber inhibited the proliferation of A431 cell line. 2. Asparagi Tuber inhibited the proliferation of KHOS-NP cell line. 3. Asparagi Tuber accelerated the proliferation of mouse thymocytes. 4. Asparagi Tuber inhibited the proliferation of mouse splenocytes. 5. Asparagi Tuber $100{\mu}g/m{\ell}$ inhibited the production of NO from macrophages in vitro, being compared NPS+IFN treated group. 6. Asparagi Tuber inhibited the production of NO from macrophages in vivo, being compared LPS+IFN treated group. 7. Asparagi Tuber accelerated the induction of apoptosis of the mouse thymocytes. 8. In subpopulation Asparagi Tuber increased $T_H$ of the mouse thymocytes, but decreased $T_C/T_S$ of the mouse thymocytes.

  • PDF

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.