• Title/Summary/Keyword: Taylor series 방법

Search Result 48, Processing Time 0.021 seconds

A Study on Efficient Polynomial-Based Discrete Behavioral Modeling Scheme for Nonlinear RF Power Amplifier (비선형 RF 전력 증폭기의 효율적 다항식 기반 이산 행동 모델링 기법에 관한 연구)

  • Kim, Dae-Geun;Ku, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1220-1228
    • /
    • 2010
  • In this paper, we suggest a scheme to develop an efficient discrete nonlinear model based on polynomial structure for a RF power amplifier(PA). We describe a procedure to extract a discrete nonlinear model such as Taylor series or memory polynomial by sampling the input and output signal of RF PA. The performance of the model is analyzed varying the model parameters such as sample rate, nonlinear order, and memory depth. The results show that the relative error of the model is converged if the parameters are larger than specific values. We suggest an efficient modeling scheme considering complexity of the discrete model depending on the values of the model parameters. Modeling efficiency index(MEI) is defined, and it is used to extract optimum values for the model parameters. The suggested scheme is applied to discrete modeling of various RF PAs with various input signals such as WCDMA, WiBro, etc. The suggested scheme can be applied to the efficient design of digital predistorter for the wideband transmitter.

Location and Gain/Phase Calibration Techniques for Array Sensors with known Sources (기준신호원을 이용한 배열센서의 위치, 이득, 위상 보정기법)

  • Yoo, Seong Ki;Lee, Tae Beom;Shin, Ki Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.155-163
    • /
    • 2012
  • The geometrical and electrical errors of array sensors can severely degrade the performance of array sensor system. Various calibration techniques are developed to alleviate this problem. In this paper, two different calibration methods with respect to location, gain and phase of array sensors are presented. One method applies the first-order Taylor series expansion to approximate the true steering vector from the nominal values of array sensors. Then a set of equations is formed by using the null characteristics of the MUSIC spectrum to estimate errors of location, gain and phase of array sensors. Another method estimates these errors based on the data covariance matrix of pilot sources. From the simulations, it is demonstrated that two calibration algorithms calibrated an array system successfully. In addition to that, Fistas and Manikas's algorithm is more robust against noise than Ng and Lie's one when SNR is from 10dB to 50dB.

A fundamental study on the ventilation analysis method for the network-type tunnel - focused on the none hardy-cross method (네트워크형 터널의 환기해석 방법에 대한 기초연구-비 Hardy-Cross 방법을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.291-303
    • /
    • 2016
  • Recently, various forms of diverging sections in tunnels have been designed as the demand for underground passageway in urban areas increases. Therefore, the complexity of the ventilation system in tunnels with diverging sections requires a ventilation analysis method different from the conventional method for the straight tunnels. None of the domestic and foreign tunnel ventilation design standards specifies the method for the ventilation network analysis, and the numerical analysis methods have been most widely used. This paper aims at reviewing the ventilation network analytical method applicable as the design standard. The proposed method is based on the characteristic equations rather than the numerical analysis. Thanks to the advantages of easy application, the Hardy-Cross method has been widely applied in the fields of mine ventilation and tunnel ventilation. However, limitations with the cutting errors in the Taylor series expansion and the convergence problem mainly caused by the mesh selection algorithm have been reported. Therefore, this paper examines the applicability of the ventilation analysis method for network-type tunnels with the gradient method that can analyze flow rate and pressure simultaneously without the configuration of mesh. A simple ventilation analysis method for network-type tunnels is proposed.

Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine (Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링)

  • Lee, Bo-Hoon;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.269-275
    • /
    • 2013
  • In this paper, a new modeling method of a magnetic levitation(Maglev) system using extreme learning machine(ELM) is proposed. The linearized methods using Taylor Series expansion has been used for modeling of a Maglev system. However, the numerical method has some drawbacks when dealing with the components with high nonlinearity of a Maglev system. To overcome this problem, we propose a new modeling method of the Maglev system with electro magnetic suspension, which is based on ELM with fast learning time than conventional neural networks. In the proposed method, the initial input weights and hidden biases of the method are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose generalized inverse. matrix Experimental results show that the proposed method can achieve better performance for modeling of Maglev system than the previous numerical method.

A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody (다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구)

  • Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

The State Estimation by Unknown Disturbance Observer of Underwater Vehicle System for Robust Control (강인한 제어를 위한 수중이동시스템의 상태추정에 대한 연구)

  • Lee, Jin-Woo;Kim, Hwan-Seong;An, Young-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • In this paper, and estimation method for estimating the states of underwater vehicle systems with external unknown disturbance is proposed. First, the dynamics of underwater vehicle are induced by Taylor series expansion in the vertical plane and horizontal plane, respectively. For constructing the system model, the external efforts, i.e., the sea surface disturbances, the current, wave and etc., are regarded as external unknown disturbances. Thus the disturbance is added as external input into state-space form of underwater vehicle system. To estimate the state of systems with unknown disturbance, a disturbance observer which does not effected the external unknown input is proposed, and the existence condition for the observer is given. Finally, the effectiveness of the proposed disturbance observer for robust control of underwater vehicle systems is verified by using numerical simulation.

A Study on a Model Parameter Compensation Method for Noise-Robust Speech Recognition (잡음환경에서의 음성인식을 위한 모델 파라미터 변환 방식에 관한 연구)

  • Chang, Yuk-Hyeun;Chung, Yong-Joo;Park, Sung-Hyun;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.112-121
    • /
    • 1997
  • In this paper, we study a model parameter compensation method for noise-robust speech recognition. We study model parameter compensation on a sentence by sentence and no other informations are used. Parallel model combination(PMC), well known as a model parameter compensation algorithm, is implemented and used for a reference of performance comparision. We also propose a modified PMC method which tunes model parameter with an association factor that controls average variability of gaussian mixtures and variability of single gaussian mixture per state for more robust modeling. We obtain a re-estimation solution of environmental variables based on the expectation-maximization(EM) algorithm in the cepstral domain. To evaluate the performance of the model compensation methods, we perform experiments on speaker-independent isolated word recognition. Noise sources used are white gaussian and driving car noise. To get corrupted speech we added noise to clean speech at various signal-to-noise ratio(SNR). We use noise mean and variance modeled by 3 frame noise data. Experimental result of the VTS approach is superior to other methods. The scheme of the zero order VTS approach is similar to the modified PMC method in adapting mean vector only. But, the recognition rate of the Zero order VTS approach is higher than PMC and modified PMC method based on log-normal approximation.

  • PDF

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF