• 제목/요약/키워드: Task offloading

검색결과 46건 처리시간 0.024초

Efficient Task Offloading Decision Based on Task Size Prediction Model and Genetic Algorithm

  • Quan T. Ngo;Dat Van Anh Duong;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.16-26
    • /
    • 2024
  • Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods often neglect the critical consideration of future task requirements when making offloading decisions. In this paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability enables more informed offloading decisions that account for upcoming computational demands. We employ genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By considering future task requirements, our approach achieves more efficient resource utilization. We validate our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

Dynamics-Based Location Prediction and Neural Network Fine-Tuning for Task Offloading in Vehicular Networks

  • Yuanguang Wu;Lusheng Wang;Caihong Kai;Min Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3416-3435
    • /
    • 2023
  • Task offloading in vehicular networks is hot topic in the development of autonomous driving. In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing constantly. The classical deep learning algorithm always uses a pre-trained neural network to optimize task offloading, which leads to system performance degradation. Therefore, this paper proposes a neural network fine-tuning task offloading algorithm, combining with location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, respectively. After the locations are predicted, characteristics of tasks can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm continuously predicts task characteristics and fine-tunes a neural network to maintain high system performance and meet low delay requirements. From the simulation results, compared with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, especially when congestion occurs.

Range Segmentation of Dynamic Offloading (RSDO) Algorithm by Correlation for Edge Computing

  • Kang, Jieun;Kim, Svetlana;Kim, Jae-Ho;Sung, Nak-Myoung;Yoon, Yong-Ik
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.905-917
    • /
    • 2021
  • In recent years, edge computing technology consists of several Internet of Things (IoT) devices with embedded sensors that have improved significantly for monitoring, detection, and management in an environment where big data is commercialized. The main focus of edge computing is data optimization or task offloading due to data and task-intensive application development. However, existing offloading approaches do not consider correlations and associations between data and tasks involving edge computing. The extent of collaborative offloading segmented without considering the interaction between data and task can lead to data loss and delays when moving from edge to edge. This article proposes a range segmentation of dynamic offloading (RSDO) algorithm that isolates the offload range and collaborative edge node around the edge node function to address the offloading issue.The RSDO algorithm groups highly correlated data and tasks according to the cause of the overload and dynamically distributes offloading ranges according to the state of cooperating nodes. The segmentation improves the overall performance of edge nodes, balances edge computing, and solves data loss and average latency.

Toward Energy-Efficient Task Offloading Schemes in Fog Computing: A Survey

  • Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.163-172
    • /
    • 2022
  • The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

Task offloading under deterministic demand for vehicular edge computing

  • Haotian Li ;Xujie Li ;Fei Shen
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.627-635
    • /
    • 2023
  • In vehicular edge computing (VEC) networks, the rapid expansion of intelligent transportation and the corresponding enormous numbers of tasks bring stringent requirements on timely task offloading. However, many tasks typically appear within a short period rather than arriving simultaneously, which makes it difficult to realize effective and efficient resource scheduling. In addition, some key information about tasks could be learned due to the regular data collection and uploading processes of sensors, which may contribute to developing effective offloading strategies. Thus, in this paper, we propose a model that considers the deterministic demand of multiple tasks. It is possible to generate effective resource reservations or early preparation decisions in offloading strategies if some feature information of the deterministic demand can be obtained in advance. We formulate our scenario as a 0-1 programming problem to minimize the average delay of tasks and transform it into a convex form. Finally, we proposed an efficient optimal offloading algorithm that uses the interior point method. Simulation results demonstrate that the proposed algorithm has great advantages in optimizing offloading utility.

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

Strategy for Task Offloading of Multi-user and Multi-server Based on Cost Optimization in Mobile Edge Computing Environment

  • He, Yanfei;Tang, Zhenhua
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.615-629
    • /
    • 2021
  • With the development of mobile edge computing, how to utilize the computing power of edge computing to effectively and efficiently offload data and to compute offloading is of great research value. This paper studies the computation offloading problem of multi-user and multi-server in mobile edge computing. Firstly, in order to minimize system energy consumption, the problem is modeled by considering the joint optimization of the offloading strategy and the wireless and computing resource allocation in a multi-user and multi-server scenario. Additionally, this paper explores the computation offloading scheme to optimize the overall cost. As the centralized optimization method is an NP problem, the game method is used to achieve effective computation offloading in a distributed manner. The decision problem of distributed computation offloading between the mobile equipment is modeled as a multi-user computation offloading game. There is a Nash equilibrium in this game, and it can be achieved by a limited number of iterations. Then, we propose a distributed computation offloading algorithm, which first calculates offloading weights, and then distributedly iterates by the time slot to update the computation offloading decision. Finally, the algorithm is verified by simulation experiments. Simulation results show that our proposed algorithm can achieve the balance by a limited number of iterations. At the same time, the algorithm outperforms several other advanced computation offloading algorithms in terms of the number of users and overall overheads for beneficial decision-making.

Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm

  • Ziyang Jin;Yijun Wang;Jingying Lv
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.327-347
    • /
    • 2024
  • Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.