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Abstract

In vehicular edge computing (VEC) networks, the rapid expansion of intelli-

gent transportation and the corresponding enormous numbers of tasks bring

stringent requirements on timely task offloading. However, many tasks typi-

cally appear within a short period rather than arriving simultaneously, which

makes it difficult to realize effective and efficient resource scheduling. In addi-

tion, some key information about tasks could be learned due to the regular

data collection and uploading processes of sensors, which may contribute to

developing effective offloading strategies. Thus, in this paper, we propose a

model that considers the deterministic demand of multiple tasks. It is possible

to generate effective resource reservations or early preparation decisions in

offloading strategies if some feature information of the deterministic demand

can be obtained in advance. We formulate our scenario as a 0-1 programming

problem to minimize the average delay of tasks and transform it into a convex

form. Finally, we proposed an efficient optimal offloading algorithm that uses

the interior point method. Simulation results demonstrate that the proposed

algorithm has great advantages in optimizing offloading utility.
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1 | INTRODUCTION

Vehicular edge computing (VEC), which can realize
resource integration and data sharing at the edge of
vehicular networks [1–3], faces many new challenges, for
example, complicated computing resource management

processes for task offloading and the unprecedented
time-varying topology of vehicular networks [4]. Further-
more, tasks usually densely appear at different times
instead of simultaneously arriving, which adds difficulty
to scheduling and resource waste or task latency due to
continual decision making once a task arrives.
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VEC has realized powerful applications in vehicles
with limited computation resources. For example, Wang
and others [5] proposed a permissioned vehicular block-
chain in VEC called Parking-chain, where parked vehi-
cles can share idle computational resources with service
requesters (SR). In addition, Lu and others [6] proposed a
wireless digital dual-edge network model that integrates
a digital dual-edge network with an edge network to real-
ize new functionalities, for example, hyper-connected
experiences and low-latency edge computing.

However, these VEC schemes, in which traditional
edge or cloud servers typically provide computational
resources to requesting vehicles, do not consider another
feasible case that some vehicles can also share their idle
computational resources with edge SR [3, 7–9]. In fact,
many sensors, for example, traffic cameras, regularly
upload the data they acquire to the transportation system
in a practical traffic environment. As a result, the data
characteristics (i.e., data size and computational load)
collected by such a sensor in a given period may not have
huge differences compared with those with other periods.
Thus, deterministic demand could be obtained in
advance, which can be used to improve resource manage-
ment. Additionally, these tasks may appear at different
times with tiny time intervals in a subsequent short
period (e.g., a few minutes or several seconds) with their
determined characteristic information (e.g., generated
time, data size, and computational load) could be
obtained in advance. For example, some sensors
(e.g., cameras) continuously collect data over a given
period (e.g., 30 s or 60 s) and then periodically pack their
data into a task package every 30 s or 60 s. In addition,
such sensor nodes inform a control center about the
deterministic demand before packages are completely
generated, which means that the deterministic demand
information can be utilized early. Thus, the predeter-
mined information must be considered in resource man-
agement processes, which is expected to promote the
design of effective offloading strategies.

In other works, multiple tasks typically appear at the
same time and are allocated simultaneously to edge
severs; however, this ignores the asynchronism of the
task appearance time. In practical applications, various
sensors or equipment work independently with different
assignments and potentially collect or process different
types of data with different data sizes. Under such condi-
tions, the period of data collection would differ from each
other for different sensors. As a result, sensors tend to
complete their data collection processes at different
times, which introduces complications in terms of realiz-
ing effective task offloading. Thus, in this paper, we
exploit deterministic demand information because such
information can be obtained in advanced due to the

periodical work characteristics of sensors. In other words,
the demand for computation resources for tasks can be
predetermined before these data are finally packaged by
sensors.

In this case, deterministic demand information can
be utilized to solve the asynchronism problem in task
appearance time. Thus, it would make appropriate off-
loading plans quickly according to the deterministic
demand, which contributes to a reasonable and efficient
allocation of computational resources.

To address these issues, we first propose a practical
task offloading model that utilizes the deterministic
demand of multiple tasks. We then introduce a discrete-
time system to forecast the mobility of vehicles and for-
mulate a typical 0-1 programming problem, which is NP
hard, based on the average task delay. Finally, an algo-
rithm is designed to address this optimization problem
and simulation results are presented to validate the con-
vergence and effectiveness of the proposed algorithm.
Our primary contributions are summarized as follows.

1. We propose a practical task offloading model that con-
siders the deterministic demand of tasks generated by
sensors that regularly upload data.

2. We introduce a discrete-time system to forecast vehi-
cle mobility, and we formulate this model as a typical
0-1 programming problem, which is NP hard, accord-
ing to the average task delay.

3. An algorithm is designed to address the 0-1 optimiza-
tion problem, and then simulation results are pre-
sented and discussed to validate the convergence and
effectiveness of the proposed method.

The remainder of this paper is organized as follows.
Section 2 introduces the system model for the target sce-
nario. Section 3 describes the problem formulation and
presents an effective algorithm for the formulated prob-
lem. Section 4 presents simulation results and present an
accompanying analysis. Finally, the paper is concluded
in Section 5.

2 | SYSTEM MODEL

Figure 1 shows the framework for upcoming queued task
offloading in a VEC network. Here, some roadside units
(RSUs) distributed uniformly along the road, which are
denoted k �K¼ 1,…,Kf g, and there are also some smart
vehicles, which are denoted i� I ¼ 1,…,Nf g, driving on
the road at different speeds. These RSUs are connected
via fibers, and their data are shared. Here, for a given
period, if the servers of the RSUs are busy and overloaded
or the CPUs are overwhelmed, the servers of the RSUs
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can request edge services from vehicles on the road with
idle computational resources.

Assume that in an upcoming period of finite time
(likely several seconds), the infrastructures (RSUs) are
expected to generate a series of subsequent tasks along
the timeline, denoted j�J ¼ 1,…,Mf g. These tasks will
appear at different times, denoted tj � T ¼ t1,…, tMf g,
which satisfies t1 ≤ t2…≤ tj…≤ tM , and the tasks can be
characterized by tj,Cj,Dj

� �
, where Cj and Dj are the com-

putational density and data size of a task, respectively.

2.1 | Mobility model

Because the highly time-varying vehicular state informa-
tion, we can use a discrete-time system to formulate the
vehicular state. Here s�S denotes the index of time slots,
and each time slot duration Δτ is sufficiently small. Thus,

we assume that vehicular state information loci remains
unchanged, which can be expressed as follows:

locxaxisi ðsþ1Þ¼ locxaxisi ðsÞþΔτviðsÞ, ð1Þ

where locxaxisi is the coordinate location of vehicle i at its
running direction. The lateral location changes finitely
compared with the running direction; thus, we

approximately regard the lateral location as a constant.
Here, k�K¼ 1,…,Kf g represents the index of RSUs, and
the distance between vehicle i and RSU k is expressed as
follows:

Li,k½s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
locxaxisi ½s�� locRSUk

� �2þ locyaxisi ½s�
� �2r

, ð2Þ

During the offloading process, vehicles may experi-
ence several channel switches (from the last RSU’s cover-
age area to the next) due to their mobility. In a certain
cell, the ideal access point for vehicles is the RSU that
covers this cell. Thus, the ideal distance for communica-
tion between vehicles and RSUs is given as follows:

Lcom
i ½s� ¼ min

k � K
Li,k½s�f g: ð3Þ

Using an orthogonal communicate mode, user vehi-
cles would be interfered by the signals from adjacent
vehicles, and hence, it is essential to consider such inter-
ference. Thus, the communication capacity between RSU
i and vehicle j is expressed as follows:

Ri,j½s� ¼B log 1þ
PRSU Lcomi ½s�

� ��α

N0þ
P

m � J ,m≠ i
PRSU Lcomm ½s�

� ��α

0
B@

1
CA: ð4Þ

F I GURE 1 System model

Swup
i,j ¼

0, when arg min
k � K

Li,k tjþTmax
j

h in o
¼ 1, i� I

1

2Lcell
locRSU

argmin
k � K

Li,k tjþTmax
j½ �f g

(
þ locRSU

argmin
k � K

Li,k tjþTmax
j½ �f g�1

� locargmink � K Li,k tj½ �f g
RSUþ locRSU

argmin
k � K

Li,k tj½ �f gþ1

 !)
þ1

, when arg min
k � K

Li,k tjþTmax
j

h in o
≥ 2, i� I :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

Here, Lmax,com ¼
ffiffi
2

p

2 Lcell is the maximum communica-
tion distance, where Lcell is the length of a cell in xaxis.
Thus, the minimum communication rate is
Rmin ¼B log 1 þ PRSUN�1

0 Lmaxð Þ�α� �
, which is a lower

bound. Therefore, the maximum transmission delay for
task j in the given time slots is Tmax

j ¼Dj RminΔτð Þ�1.
The mobility of vehicles has a considerable influence

on task offloading problems due to the time-varying posi-
tions of the vehicles. During this process, the distances
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between vehicles and RSUs may change dramatically,
which can affect the communication between vehicles
and RSUs. In addition, channel switches may occur sev-
eral times among different communication cells, which
can result in additional delays. Thus, the transmission
delay of tasks is affected by the mobility of vehicles, and
the task offloading problem primarily depends on trans-
mission and computing delays. In this case, the vehicle
mobility model must be considered when generating allo-
cation strategies for task offloading.

In addition, during this process, vehicles may periodi-
cally pass through several cells and experience channel
switches, which may result in link instability and the
additional overhead of delay (Δcs represents the delay for
a single switch). During the process for vehicle i receiving
task j, the upper bound of the switch times is given in (5).
We then obtain the following:

ki½s� ¼

1, if

locxaxisi ðsÞ�
locRSUk þ locRSUkþ1

� �
2

� �
�

locxaxisi ðsþ1Þ�
locRSUk þ locRSUkþ1

� �
2

� �
≤ 0

0,else:

8>>>>>>><
>>>>>>>:

ð6Þ

Here, k0i½s� is used to mark the time slot when vehicle
i passes through the boundary between two cells. If
k0i½s� ¼ 1, vehicle i reaches the boundary of the two cells
(and vice versa). Then, let TSw,k

i,j ¼ s, if k0i½s� ¼ 1 for k �K
and assume TSw,k00�1

i,j < tj <TSw,k00

i,j . Thus, the assisted
parameter ϖj is followed by

ϖi,j ¼ arg min
s

XTSw,k00
i,j

s¼tj

Ri,j s½ �Δτ

							
þ

X
s¼TSw,k00

i,j þΔcs

Ri,j s½ �Δτþ���

þ
XTSw,k00þþ1
i,j

s¼T
Sw,k00�1þSw

up
i,j

i,j þSwi,jΔcs

Ri,j s½ �Δτ�Dj :j

ð7Þ

According to the ϖj obtained in (7), we can obtain the
actual transmission delay using (8).

2.2 | Offloading and computing delay

Here, there is only a communication link for task off-
loading between each vehicle and the RSUs, and once
a task appears, it is transmitted to a selected vehicle
offering service. The transmission delay and computing
delay for vehicle i for task j are denoted Tt

i,j and
Tc
i,j ¼CjDj=f i,j, respectively. The computing frequency f i,j

is the computational resources (i.e., CPU cycles) offered
by vehicle j to serve task i. We consider that f i,j follows a
uniform distribution from 0–100 (in CPU cycles), as
shown in Table 1. Introducing decision variables xi,j ¼
f0,1g�X (if xi,j ¼ 1, vehicle i serves task j, and vice
versa), and the task delay (only for j¼ 1) is expressed as
follows:

Tj ¼
X
i � I

xi,j Tt
i,jþTc

i,j

� �
: ð9Þ

At this point, the transmission delay of task j is equal
to Tr

i,j, which is the time consumption from tj to vehicle i

successfully receiving the package, that is, Tr
i,j ¼Tt

i,j.

Thus, if j≥ 2, it is possible for task u (u< j,u�J ) to wait
for transmission because task j�1 still occupies the chan-
nel of vehicle i, which can be given as tuþTr

i,u� tj >0.

Then, the initial time tj in (5)–(8) must be replaced by

tjþmax
g � G

xi,g�1 tg�1þTr
i,g�1� tj

� �
,0

n o
, and Tr

i,j is obtained

as follows:

Tr
i,j ¼ max

g � G
xi,g�1 tg�1þTr

i,g�1� tj
� �

,0
n o

þTt
i,j, ð10Þ

where G¼ 2,…, jf g. If j≥ 2, it is possible for vehicle i to
serve more than one task. Here, we assume a first come,
first served prioritization of tasks. Thus, there are two
cases for Tj. In the first case, that is, (tuþTu ≤ tj,u< j),

Tt
i,j ¼

ϖi,j� tj, when
PTSw,k00

i,j
s¼tj Ri,j½s�Δτþ

PTSw,k00þ1
i,j

s¼TSw,k00
i,j þΔcs

�
Ri,j½s�Δτþ���þ

PT
Sw,k00þSwup

i,j
i,j

s¼T
Sw,k00�1þSw

up
i,j

i,j þSwi,jΔcs
Ri,j½s�Δτ�Dj

�
≥ 0

ϖi,jþ1� tj, when
PTSw,k00

i,j
s¼tj Ri,j½s�Δτ þ

PTSw,k00þ1
i,j

s¼TSw,k00
i,j þΔcs

Ri,j½s�Δτþ
�

� � �þ
PT

Sw,k00þSw
up
i,j

i,j

s¼T
Sw,k00�1þSw

up
i,j

i,j þSwi,jΔcs
Ri,j½s�Δτ�Dj

!
<0:

8>>>>><
>>>>>:

ð8Þ
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task j has no additional time consumption except waiting
for transmission; therefore, Tj is similar to (9), which is

Tj ¼
P
i �N

xi,j Tr
i,jþTc

i,j

� �
. In the second case, that is,

(tuþTu > tj,u< j), it is possible for vehicle i to wait for
computing because the vehicular CPU is occupied by pre-
vious tasks, and the time consumption can be expressed
as follows:

Twait
i,j ¼ max max

g � G
xi,g�1 tg�1þTg�1� tj

� �
 �
,Tr

i,j

� 
: ð11Þ

In this case, Tj is followed by

Tj ¼
X
i � I

xi,j Twait
i,j þTc

i,j

� �
: ð12Þ

Then, the delay of task j can be obtained as follows.

Tj ¼

X
i � I xi,j Tt

i,jþTc
i,j

� �
,when j¼ 1

X
i � I xi,j Tr

i,jþTc
i,j

� �
,when j≥ 2 and tj�1þTj�1 ≤ tjX

i � I xi,j Twait
i,j þTc

i,j

� �
,when j≥ 2 and tj�1þTj�1 > tj

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

P1 min
xi,j � X

1
M

X
j¼1

X
i � I

xi,j Tt
i,jþTc

i,j

� �
,

(

þ
Pj≥ 2

tj�1þTj�1 ≤ tj

P
i � I

xi,j max g � G xi,g�1 tg�1þTr
i,g�1� tj

� �
,0

n o�

þTt
i,jþTc

i,j

�
þ

Pj≥ 2

tj�1þTj�1 > tj

P
i � I

xi,j

max max
g � G

xi,g�1 tg�1þTg�1� tj
� �
 �

,Tr
i,j

� 
þTc

i,j

� �

ð14Þ

s:t:xi,j � f0,1g, i� I , j�J , ð14aÞ

X
i � J

xi,j ¼ 1, j�J : ð14bÞ

3 | PROBLEM FORMULATION
AND PROPOSED ALGORITHM

The proposed optimal edge computing problem, which
minimizes the average delay of tasks in queue, can be
formulated as P1, as shown in (14).

Note that problem P1 is NP hard under
constraints (14a) and (14b); thus, binary variable xi,j can
be slacked into yi,j � ½0,1�. As a result, this problem can be
transformed as follows.

P2 min
yi,j � Y

f ðYÞ, ð15Þ

s:t:yi,j�1≤ 0, i� I , j�J , ð15aÞ

�yi,j ≤ 0, i� I , j�J , ð15bÞ

X
i � I

yi,j�1¼ 0, j�J : ð15cÞ

This problem can be approached as a linear program-
ming problem, and we consider solving it using the
interior point method [10]. First, constraint (15c) can be
further slacked into

P
i � I

yi,j�1≤ 0; therefore, the penalty

function can be formulated as follows:

FðYÞ¼ f ðYÞ� 1
α

X
j � J

log 1�
X
i � I

yi,j

 !

�1
α

X
i � I

X
j � J

log 1�yi,j
� �

þ log yi,j
� �

,

ð16Þ

where

TAB L E 1 Simulation parameters

Parameters Description Value

W Bandwidth of RSUs for
each vehicle

1 MHz

α Pass-loss exponent of
communication

4

N0 Noise power 10�15 W

PRSU Transmitted power of RSUs 2 W

wlane Width of each lane 3.6 m

Lcell Length of a cellular
covered by RSUs

100 m

M Number of tasks 2–8

Dj Data size of task j 50 MB–400 MB

Cj Computing density of tasks 50–400

f i,j Computation resources of
vehicles

U(0, 100)

N Number of vehicles 5–40

K Number of RSUs 20

v Speed of vehicles 10 m/s–20 m/s

s Length of a time slot 0.01 s
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ryi,jF Yð Þ¼

1
M

Tt
i,jþTc

i,j

� �
þ 1
α

1

1�
P

i � Iyi,j
� �� 1

α

1
yi,j

� 1
1� yi,j

 !
, if j¼ 1

1
M

ðmax
g � G

yi,g�1 tg�1þTr
i,g�1� tj

� �
0

n o
þTt

i,jþTc
i,jÞþ

1
α

1

1�
P

i � Iyi,j
� �� 1

α

1
yi,j

� 1
1� yi,j

 !
,

if j≥ 2 and tj�1þTj�1 ≤ tj

1
M

ðmaxfmax
g � G

yi,g�1 tg�1þTg�1� tj
� �n o

,Tr
i,jgþTc

i,jÞþ
1
α

1

1�
P

i � Iyi,j
� �� 1

α

1
yi,j

� 1
1� yi,j

 !
,

if j≥ 2 and tj�1þTj�1 > tj:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð17Þ

α>0 is the penalty factor, and FðYÞ will be more approxi-
mate to the original function as α increases. We can then
obtain the gradient of FðYÞ, which is shown in (17).

Based on ryi,jFðYÞ, we obtain a set of solutions to
minFðYÞ with the gradient method and then transform it
to satisfy constraint (15c). However, the original problem
is a 0-1 programming problem; thus, we must transform
the continuous solution Y into an integer solution X.
Here, the main steps of the proposed edge computing
scheme are summarized in Algorithm 1, which is referred
to as the TODD algorithm.

4 | SIMULATION AND
DISCUSSION

In this section, we present simulation results to evaluate
the effectiveness of the proposed algorithm. Here, we con-
sider a straight three-lane road with RSUs evenly located
in each area and 10 vehicles driving at different speeds,
that is, 20 m/s, 15 m/s, and 10 m/s. In this simulation, we
set three tasks with different data sizes (100 MB, 200 MB,
and 300 MB) and computational densities (100, 200, and
300), and these tasks appear at different times under a
Poisson distribution.

The unit of computational density Cj is CPU cycles
per bit, and the data size unit Dj is bits. Thus, the total
required CPU cycles to execute a task is given by CjDj. In
addition, the unit of computational resources is the CPU
cycles offered by the edge servers in 1 s [8].

In this simulation, we evaluated four different algo-
rithms or schemes as benchmarks to verify the effective-
ness of the proposed algorithm. These benchmark
algorithms/schemes are summarized as follows.

1. TODD, the proposed algorithm “Task Offloading
under Deterministic Demand.”

2. Genetic algorithm (GA). The GA is a classic optimiza-
tion algorithm that is widely used in various fields.
Here, we have 10 groups, and we used the mutation,
crossover, and selection operations to identify good
solutions during the process of the GA algorithm.

3. Folo is an algorithm proposed in Zhu and others [9].
4. The exhaustive method lists all feasible solutions and

selects the best one.
5. The resource-greedy RG) method always selects the

vehicle with the most computational resources.

Figure 2 shows the convergence of the proposed
TODD algorithm implemented in a simulation environ-
ment compared with the benchmark schemes, that is, the
GA algorithm, Folo [9], and the exhaustive method. As
can be seen, satisfactory performance was obtained by the
proposed algorithm in four iterations, and then it con-
verged at approximately 34 iterations, which is very close
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to the results of the exhaustive method and remarkably
better than the GA and Folo methods.

Figure 3 compares the utility relative to the different
arrival rates of tasks with other edge caching scheduling
methods. Here, the data size of the task flow was set to
(200, 200) MB, (200, 200, 200) MB, and so on, and the
task arrival/appearance time was determined according
to the Poisson distribution. As can be seen, all schemes
exhibited various trends as the arrival rates of tasks
increased, where the proposed TODD algorithm is better
than the GA, Folo, and RG method, which always selects
the vehicle with the most available computational
resource.

Figure 4 shows the effectiveness of the proposed
method under different task sizes compared with other
edge caching scheduling methods. Here, we have four

tasks with average data sizes of 50–400 MB. As can be
seen, all compared schemes exhibited various degrees of
increasing rising trend as the task arrival rate increased.
We found that the proposed TODD algorithm outper-
formed the GA, Folo, and RG methods.

Figure 5 verifies the effectiveness of the proposed
TODD algorithm in terms of different numbers of vehi-
cles compared with other edge caching scheduling
schemes. Here, we set three tasks with an average size of
200 MB and various vehicle numbers ranging from 5 to
40. As can be seen, the proposed TODD algorithm out-
performed the GA, Folo, and RG methods, and all
methods exhibited various degrees of declining trend as
the number of vehicles increased because a large number
of users may bring large computation resources and
choices.

F I GURE 2 Process of iteration

F I GURE 3 Performance comparison with different task

arrival rates

F I GURE 4 Performance comparison with different task sizes

F I GURE 5 Performance comparison with different numbers

of vehicles
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5 | CONCLUSION

In this paper, we investigated a vehicle edge computing
network with tasks that arrive at different times, which
utilizes the deterministic demand of tasks. We con-
structed an optimization problem based on the system
model and designed an efficient algorithm to solve the
target problem. The performance of the proposed TODD
algorithm was evaluated and compared with existing
methods. The simulation results demonstrate that the
edge system utility gained by the proposed algorithm
was greater than that of the other two benchmark
approaches. However, in complex traffic environments
with highly dynamic changes in vehicle topology, the
VEC network and task offloading strategies require
further investigation. In addition, the age of information
is also a potential direction for future work.
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