• Title/Summary/Keyword: Task computing

Search Result 542, Processing Time 0.022 seconds

A Case Study: Unsupervised Approach for Tourist Profile Analysis by K-means Clustering in Turkey

  • Yildirim, Mustafa Eren;Kaya, Murat;FurkanInce, Ibrahim
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • Data mining is the task of accessing useful information from a large capacity of data. It can also be referred to as searching for correlations that can provide clues about the future in large data warehouses by using computer algorithms. It has been used in the tourism field for marketing, analysis, and business improvement purposes. This study aims to analyze the tourist profile in Turkey through data mining methods. The reason relies behind the selection of Turkey is the fact that Turkey welcomes millions of tourist every year which can be a role model for other touristic countries. In this study, an anonymous and large-scale data set was used under the law on the protection of personal data. The dataset was taken from a leading tourism company that is still active in Turkey. By using the k-means clustering algorithm on this data, key parameters of profiles were obtained and people were clustered into groups according to their characteristics. According to the outcomes, distinguishing characteristics are gathered under three main titles. These are the age of the tourists, the frequency of their vacations and the period between the reservation and the vacation itself. The results obtained show that the frequency of tourist vacations, the time between bookings and vacations, and age are the most important and characteristic parameters for a tourist's profile. Finally, planning future investments, events and campaign packages can make tourism companies more competitive and improve quality of service. For both businesses and tourists, it is advantageous to prepare individual events and offers for the three major groups of tourists.

A new lightweight network based on MobileNetV3

  • Zhao, Liquan;Wang, Leilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The MobileNetV3 is specially designed for mobile devices with limited memory and computing power. To reduce the network parameters and improve the network inference speed, a new lightweight network is proposed based on MobileNetV3. Firstly, to reduce the computation of residual blocks, a partial residual structure is designed by dividing the input feature maps into two parts. The designed partial residual structure is used to replace the residual block in MobileNetV3. Secondly, a dual-path feature extraction structure is designed to further reduce the computation of MobileNetV3. Different convolution kernel sizes are used in the two paths to extract feature maps with different sizes. Besides, a transition layer is also designed for fusing features to reduce the influence of the new structure on accuracy. The CIFAR-100 dataset and Image Net dataset are used to test the performance of the proposed partial residual structure. The ResNet based on the proposed partial residual structure has smaller parameters and FLOPs than the original ResNet. The performance of improved MobileNetV3 is tested on CIFAR-10, CIFAR-100 and ImageNet image classification task dataset. Comparing MobileNetV3, GhostNet and MobileNetV2, the improved MobileNetV3 has smaller parameters and FLOPs. Besides, the improved MobileNetV3 is also tested on CPU and Raspberry Pi. It is faster than other networks

GPU Memory Management Technique to Improve the Performance of GPGPU Task of Virtual Machines in RPC-Based GPU Virtualization Environments (RPC 기반 GPU 가상화 환경에서 가상머신의 GPGPU 작업 성능 향상을 위한 GPU 메모리 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.5
    • /
    • pp.123-136
    • /
    • 2021
  • RPC (Remote Procedure Call)-based Graphics Processing Unit (GPU) virtualization technology is one of the technologies for sharing GPUs with multiple user virtual machines. However, in a cloud environment, unlike CPU or memory, general GPUs do not provide a resource isolation technology that can limit the resource usage of virtual machines. In particular, in an RPC-based virtualization environment, since GPU tasks executed in each virtual machine are performed in the form of multi-process, the lack of resource isolation technology causes performance degradation due to resource competition. In addition, the GPU memory competition accelerates the performance degradation as the resource demand of the virtual machines increases, and the fairness decreases because it cannot guarantee equal performance between virtual machines. This paper, in the RPC-based GPU virtualization environment, analyzes the performance degradation problem caused by resource contention when the GPU memory requirement of virtual machines exceeds the available GPU memory capacity and proposes a GPU memory management technique to solve this problem. Also, experiments show that the GPU memory management technique proposed in this paper can improve the performance of GPGPU tasks.

Deep Learning Models for Autonomous Crack Detection System (자동화 균열 탐지 시스템을 위한 딥러닝 모델에 관한 연구)

  • Ji, HongGeun;Kim, Jina;Hwang, Syjung;Kim, Dogun;Park, Eunil;Kim, Young Seok;Ryu, Seung Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.161-168
    • /
    • 2021
  • Cracks affect the robustness of infrastructures such as buildings, bridge, pavement, and pipelines. This paper presents an automated crack detection system which detect cracks in diverse surfaces. We first constructed the combined crack dataset, consists of multiple crack datasets in diverse domains presented in prior studies. Then, state-of-the-art deep learning models in computer vision tasks including VGG, ResNet, WideResNet, ResNeXt, DenseNet, and EfficientNet, were used to validate the performance of crack detection. We divided the combined dataset into train (80%) and test set (20%) to evaluate the employed models. DenseNet121 showed the highest accuracy at 96.20% with relatively low number of parameters compared to other models. Based on the validation procedures of the advanced deep learning models in crack detection task, we shed light on the cost-effective automated crack detection system which can be applied to different surfaces and structures with low computing resources.

Consideration for defense preparedness against non-traditional security threats (focused on the threat of infectious diseases) (비전통 위협에 대한 국방 업무수행체계 유지방안 (감염병 위협 중심으로))

  • Kwon, Hyukjin;Shin, Donggyu;Shin, Youngjoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • The national defense requires uninterrupted decision-making, even under direct or indirect impacts on non-traditional threats such as infectious diseases. Since all work utilizes the information system, it is very important to ensure the availability of the information system. In particular, in terms of security management, defense work is being performed by dividing the network into a national defense network and a commercial Internet network. This study suggests a work execution plan that takes into account the efficiency of work performed on the Internet and the effectiveness of security through effective defense information system operation. It is necessary to minimize the network contact point between the national defense network and the commercial Internet, and to select a high-priority one among various tasks and operate it efficiently. For this purpose, actual cases were investigated for "A" institution and characteristics were presented. Through the targeted tasks and operation plans to improve the effectiveness of defense tasks and ensure security, presented in this paper, it will be possible to increase the availability of task performance even in non-traditional threats such as infectious diseases.

A Design of Network Topology Discovery System based on Traffic In-out Count Analysis (네트워크 트래픽 입출량 분석을 통한 네트워크 토폴로지 탐색 시스템 설계)

  • Park, Ji-Tae;Baek, Ui-Jun;Shin, Mu-Gon;Lee, Min-Seong;Kim, Myung-Sup
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • With the rapid development of science and technology in recent years, the network environment are growing, and a huge amount of traffic is generated. In particular, the development of 5G networks and edge computing will accelerate this phenomenon. However, according to these trends, network malicious behaviors and traffic overloads are also frequently occurring. To solve these problems, network administrators need to build a network management system to implement a high-speed network and should know exactly about the connection topology of network devices through the network management system. However, the existing network topology discovery method is inefficient because it is passively managed by an administrator and it is a time consuming task. Therefore, we proposes a method of network topology discovery according to the amount of in and out network traffic. The proposed method is applied to a real network to verify the validity of this paper.

3D Medical Image Data Augmentation for CT Image Segmentation (CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법)

  • Seonghyeon Ko;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.85-92
    • /
    • 2023
  • Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.

A Worker-Driven Approach for Opening Detection by Integrating Computer Vision and Built-in Inertia Sensors on Embedded Devices

  • Anjum, Sharjeel;Sibtain, Muhammad;Khalid, Rabia;Khan, Muhammad;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.353-360
    • /
    • 2022
  • Due to the dense and complicated working environment, the construction industry is susceptible to many accidents. Worker's fall is a severe problem at the construction site, including falling into holes or openings because of the inadequate coverings as per the safety rules. During the construction or demolition of a building, openings and holes are formed in the floors and roofs. Many workers neglect to cover openings for ease of work while being aware of the risks of holes, openings, and gaps at heights. However, there are safety rules for worker safety; the holes and openings must be covered to prevent falls. The safety inspector typically examines it by visiting the construction site, which is time-consuming and requires safety manager efforts. Therefore, this study presented a worker-driven approach (the worker is involved in the reporting process) to facilitate safety managers by developing integrated computer vision and inertia sensors-based mobile applications to identify openings. The TensorFlow framework is used to design Convolutional Neural Network (CNN); the designed CNN is trained on a custom dataset for binary class openings and covered and deployed on an android smartphone. When an application captures an image, the device also extracts the accelerometer values to determine the inclination in parallel with the classification task of the device to predict the final output as floor (openings/ covered), wall (openings/covered), and roof (openings / covered). The proposed worker-driven approach will be extended with other case scenarios at the construction site.

  • PDF

Detects depression-related emotions in user input sentences (사용자 입력 문장에서 우울 관련 감정 탐지)

  • Oh, Jaedong;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1759-1768
    • /
    • 2022
  • This paper proposes a model to detect depression-related emotions in a user's speech using wellness dialogue scripts provided by AI Hub, topic-specific daily conversation datasets, and chatbot datasets published on Github. There are 18 emotions, including depression and lethargy, in depression-related emotions, and emotion classification tasks are performed using KoBERT and KOELECTRA models that show high performance in language models. For model-specific performance comparisons, we build diverse datasets and compare classification results while adjusting batch sizes and learning rates for models that perform well. Furthermore, a person performs a multi-classification task by selecting all labels whose output values are higher than a specific threshold as the correct answer, in order to reflect feeling multiple emotions at the same time. The model with the best performance derived through this process is called the Depression model, and the model is then used to classify depression-related emotions for user utterances.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.