The initial research of Task Computing in the ubiquitous computing (UbiComp) environment revealed the need for access control of services. Context-awareness of service requests in ubiquitous computing necessitates a well-designed model to enable effective and adaptive invocation. However, nowadays little work is being undertaken on service access control under the UbiComp environment, which makes the exposed service suffer from the problem of ill-use. One of the research focuses is how to handle the access to the resources over the network. Policy-Based Access Control is an access control method. It adopts a security policy to evaluate requests for resources but has a light-weight combination of the resources. Motivated by the problem above, we propose a universal model and an algorithm to enhance service access control in UbiComp. We detail the architecture of the model and present the access control implementation.
IT 기술의 발전으로 시간적, 물리적 제약을 넘은 미래 인터넷 기술에 대한 사용자들의 기대가 커지고 있다. 이러한 요구를 충족시키기 위해 최근 새로운 개념으로 주목 받고 있는 것이 클라우드 컴퓨팅이다. 그러나 이러한 긍정적인 전망에도 불구하고 클라우드 컴퓨팅의 도입은 활발히 이루어지고 있지 않고 있는 실정이다. 따라서 본 연구에서는 클라우드 컴퓨팅 환경의 특성이 프로젝트 수행성과에 어떠한 영향을 미치는가에 대하여 살펴보았다. 본 연구는 기술적 도구로써 클라우드 컴퓨팅을 과업과 기술의 적합성 모형에 적용하여 클라우드 컴퓨팅 환경에서 개인이 프로젝트를 수행할 시에 나타나는 성과에 대하여 실증적인 연구를 하였다. 대학교 및 대학원에서 팀 단위의 프로젝트를 수행할 때, 클라우드 컴퓨팅의 가장 널리 보급된 형태인 GoogleDocs 및 웹하드에 대한 사용경험이 있는 응답자를 대상으로 설문을 수행하였다. 본 연구에서는 클라우드 컴퓨팅 환경에서 프로젝트를 수행한다는 행위에 중점을 두어, 접근성과 신뢰성을 적합성을 파악하기 위한 1차 요인으로 정의하여 프로젝트의 상호의존성과 개인의 특성이 적합성 및 활용을 통하여 성과에 어떤 영향을 미치는지를 분석하였다. 연구결과, 클라우드 컴퓨팅 환경은 팀 단위의 프로젝트 수행에 있어 적합한 도구라는 사실을 규명하였다. 본 연구는 초기단계의 클라우드 컴퓨팅에 있어 개인이 지각하는 적합성 및 성과를 규명함으로써, 협업에서의 클라우드 컴퓨팅의 긍정적인 영향에 대한 근거를 제시한다.
Cloud computing is provided on demand service via the internet, allowing users to pay for the service they actually use. Categorized as one kind of cloud computing, SaaS is computing resource and software sharing model with can be accessed via the internet. Based on virtualization technology, SaaS is expected to improve the efficiency and quality of the IT service level and performance in company. Therefore this research limited cloud services to SaaS especially focused on collaborative application service, and attempts to identify the factors which impact the performance of collaboration and intention to use. This study adopts technological factors of cloud SaaS services and factors of task characteristics to explore the determinants of collaborative performance and intention to use. An experimental study using student subjects with Google Apps provided empirical validation for our proposed model. Based on 337 data collected from respondents, the major findings are following. First, the characteristics of cloud computing services such as collaboration support, service reliability, and ease of use have positive effects on perceived usefulness of collaborative application while accessability, service reliability, and ease to use have positive effects on intention to use. Second, task interdependence has a positive effects on collaborative performance while task ambiguity factor has not. Third, perceived usefulness of collaborative application have positive effects on intention to use.
In vehicular edge computing (VEC) networks, the rapid expansion of intelligent transportation and the corresponding enormous numbers of tasks bring stringent requirements on timely task offloading. However, many tasks typically appear within a short period rather than arriving simultaneously, which makes it difficult to realize effective and efficient resource scheduling. In addition, some key information about tasks could be learned due to the regular data collection and uploading processes of sensors, which may contribute to developing effective offloading strategies. Thus, in this paper, we propose a model that considers the deterministic demand of multiple tasks. It is possible to generate effective resource reservations or early preparation decisions in offloading strategies if some feature information of the deterministic demand can be obtained in advance. We formulate our scenario as a 0-1 programming problem to minimize the average delay of tasks and transform it into a convex form. Finally, we proposed an efficient optimal offloading algorithm that uses the interior point method. Simulation results demonstrate that the proposed algorithm has great advantages in optimizing offloading utility.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.327-347
/
2024
Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.
최근에 많은 유휴 상태의 호스트 자원들을 이용한 인터넷 기반 분산/병렬 컴퓨팅은 대용량 작업처리와 여러 중요 논제들에 대해 그 유용성이 증명되고 있다. 대용량 작업이 수행되는 동안, 작업에 참여하는 호스트의 성능과 상태 변화에 대처하기 위한 실시간 모니터링 기능이 요구된다. 본 연구에서는 글로벌 컴퓨팅 (global computing) 인트라스트럭처(infrastructure)로 구축된 인터넷 기반 분산/병렬 처리 프레임워크인 PDP(Parallel Distributed Processing)상의 실시간 모니터링 및 시각화에 대한 내용을 소개한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.383-403
/
2021
With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.
With the development of mobile edge computing, how to utilize the computing power of edge computing to effectively and efficiently offload data and to compute offloading is of great research value. This paper studies the computation offloading problem of multi-user and multi-server in mobile edge computing. Firstly, in order to minimize system energy consumption, the problem is modeled by considering the joint optimization of the offloading strategy and the wireless and computing resource allocation in a multi-user and multi-server scenario. Additionally, this paper explores the computation offloading scheme to optimize the overall cost. As the centralized optimization method is an NP problem, the game method is used to achieve effective computation offloading in a distributed manner. The decision problem of distributed computation offloading between the mobile equipment is modeled as a multi-user computation offloading game. There is a Nash equilibrium in this game, and it can be achieved by a limited number of iterations. Then, we propose a distributed computation offloading algorithm, which first calculates offloading weights, and then distributedly iterates by the time slot to update the computation offloading decision. Finally, the algorithm is verified by simulation experiments. Simulation results show that our proposed algorithm can achieve the balance by a limited number of iterations. At the same time, the algorithm outperforms several other advanced computation offloading algorithms in terms of the number of users and overall overheads for beneficial decision-making.
International Journal of Computer Science & Network Security
/
제23권1호
/
pp.140-146
/
2023
Resource allocation is one of the top challenges in Internet of Things (IoT) networks. This is due to the scarcity of computing, energy and communication resources in IoT devices. As a result, IoT devices that are not using efficient algorithms for resource allocation may cause applications to fail and devices to get shut down. Owing to this challenge, this paper proposes a novel algorithm for managing computing resources in IoT network. The fog computing devices are placed near the network edge and IoT devices send their large tasks to them for computing. The goal of the algorithm is to conserve energy of both IoT nodes and the fog nodes such that all tasks are computed within a deadline. A bi-partite graph-based algorithm is proposed for stable matching of tasks and fog node computing units. The output of the algorithm is a stable mapping between the IoT tasks and fog computing units. Simulation results are conducted to evaluate the performance of the proposed algorithm which proves the improvement in terms of energy efficiency and task delay.
클라우드 컴퓨팅의 IaaS 서비스는 유지비용 없이 원하는 만큼의 고성능 가상 머신을 사용할 수 있다는 장점 덕분에 대용량 병렬 프로그램을 실행하기 위한 고성능 컴퓨팅 환경으로 주목받고 있다. 이러한 고성능 컴퓨팅 환경에서 병렬 프로그램의 실행에 소요되는 시간은 태스크 스케줄링 알고리즘에 좌우된다. 클라우드 컴퓨팅 환경을 기반으로 하는 태스크 스케줄링 알고리즘에 관한 연구는 사용자 부담 비용을 최소화하는 알고리즘이 주류를 이루었으며, 병렬 프로그램의 실행을 최대한 빨리 끝내기 위한 알고리즘에 관한 연구는 거의 이루어지지 않았다. 본 논문에서는 사용자 부담 비용 등의 제약 없이 병렬 프로그램을 최대한 빨리 끝내기 위한 알고리즘인 HAGD 알고리즘과, HAGD 알고리즘이 사용하는 새로운 성능 향상 기법인 묶음 태스크 복제 기법을 제안한다. 묶음 태스크 복제 기법은 기존 태스크 복제 기법을 단순화하였으며, HAGD 알고리즘은 고성능 컴퓨팅 환경과 병렬 프로그램의 특성에 맞추어 태스크 삽입 기법 혹은 묶음 태스크 복제 기법을 사용한다. 성능 평가 결과, 제안하는 알고리즘이 환경 특성과 관계없이 우수한 표준화한 전체 실행 시간을 제공하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.