다양한 IoT(Internet of Things) 서비스들이 등장하면서 IoT 기기의 테스크를 오프로딩 시키는 연구가 진행되었다. 기존에는 클라우드 컴퓨팅을 통한 오프로딩이 고려되었지만 서비스 응답 지연 및 코어 네트워크의 부하 등의 이슈로 인해 IoT 기기 근처에서 오프로딩을 지원하는 포그 컴퓨팅 개념이 도입되었다. 하지만 포그 컴퓨팅 환경에서도 서비스 대상 IoT 기기가 증가하게 되면 클라우드 환경과 마찬가지로 부하 집중 문제로 인해 서비스 응답 지연이 발생할 수 있다. 이를 해결하기 위하여 자동차, 드론 등 IoT 기기 근처에 존재하는 컴퓨팅 가능 노드들을 통해 오프로딩을 수행하는 개념인 기회적 포그 컴퓨팅이 등장하였다. 기존의 포그 및 기회적 포그 컴퓨팅 노드들을 활용한 오프로딩 연구들은 서비스의 요청이 있을 때 가용한 노드를 통해 오프로딩을 수행한다. 기존의 연구 방법대로 오프로딩을 수행한다면 기회적 포그 컴퓨팅 노드가 가용할 때에 발생된 요청들만 해당 노드들로 오프로딩이 가능하다. 하지만 서비스의 응답 지연 요구사항만 만족시킨다면 즉시적으로 요청을 처리할 필요가 없고 최대한 많은 테스크를 기회적 포그 컴퓨팅 노드로 오프로딩 시키는 것이 부하 분산에 용이하다. 그러므로 본 논문에서는 오프로딩 타이머를 기반으로 서비스 응답 지연 요구사항을 만족시키면서 최대한 기회적 포그 컴퓨팅 노드들을 통해 오프로딩 시킬 수 있는 지연된 오프로딩 방법을 제안하고자 한다.
본 논문에서는 FEC (Fog/Edge Computing) 환경에서 다중 분기구조의 부분 오프로딩을 위해 모바일 장치와 에지서버로 구성된 2계층 협력 컴퓨팅 시스템을 제안한다. 제안 시스템은 다중 분기구조에 대한 재구성 선형화 기법을 적용하여 응용 서비스 처리를 분할하는 알고리즘과 모바일 장치와 에지 서버 간의 부분 오프로딩을 통한 최적의 협업 알고리즘을 포함한다. 또한 계산 오프로딩 및 CNN 계층 스케줄링을 지연시간 최소화 문제로 공식화하고 시뮬레이션을 통해 제안 시스템의 효과를 분석한다. 실험 결과 제안 알고리즘은 DAG 및 체인 토폴로지 모두에 적합하고 다양한 네트워크 조건에 잘 적응할 수 있으며, 로컬이나 에지 전용 실행과 비교하여 효율적인 작업 처리 전략 및 처리시간을 제공한다. 또한 제안 시스템은 모바일 장치에서의 응용 서비스 최적 실행을 위한 모델의 경량화 및 에지 리소스 워크로드의 효율적 분배 관련 연구에 적용 가능하다.
모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC)은 높은 컴퓨팅 성능을 요구하는 작업을 모바일 장치에서 가까운 MEC 서버로 오프로딩함으로써 모바일 서비스에 높은 계산 요구량을 효율적으로 제공할 수 있는 기술로 부상하였다. 본 논문에서는 실행 대기 시간과 장치 에너지 소비를 줄이기 위해 여러 가지의 독립적 작업을 통해 MEC 시스템에 대한 작업 오프로드 일정 및 전송 에너지 할당을 최적화하는 기법을 제안한다. 시뮬레이션 결과로 MEC 시스템에서 사용 가능한 무선 및 계산 리소스가 상대적으로 균형 잡혀있는 경우 작업 오프로딩 일정이 더 중요하다는 것을 확인했다.
Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5614-5633
/
2018
Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.
모바일 기기로부터 클라우드 서버로 태스크를 오프로딩하는 방법은 클라우드랫(cloudlet)의 도입으로 인해 향상되었다. 동적 오프로딩 알고리즘을 통해 모바일 장비는 수행할 타스크에 적절한 서버를 선택할 수 있다. 하지만 현재의 태스크 분배 방식은 의사결정에서 중요한 VM의 수를 고려하지 않고 있다. 본 논문은 클러스터된 데이터 센터에서 동적인 타스크 분배 방법을 제시한다. 또한 서버에서 자원의 과부하를 방지하기 위해 할당된 CPU에 따라 VM을 균형있게 클라우드 서버에 이주시키는 VM이주 기법을 제안한다. 클라우드 서버의 이주 방법을 향상시키기 위해 최대 CPU 관점에서 데이터 센터의 자원 용량도 고려한다. 시뮬레이션 결과, 제시한 태스크 분배 기법이 전반적으로 시스템의 성능을 향상시켰음을 나타내었다.
사물인터넷의 발전으로 인하여 수많은 디바이스가 생겨나고, 큰 계산 자원을 요구하는 태스크들이 많이 발생된다. 이런 사물인터넷 환경에서 Mobile Edge Computing(MEC)는 지리적으로 사용자와 근접하여 서비스를 제공하기 때문에 많은 주목을 받고 있다. MEC 서버로의 태스크 오프로딩은 제한된 배터리 수명과 계산 능력을 갖고 있는 디바이스에게 효율적이다. 본 연구는 높은 신뢰도를 요구하는 산업용 IoT 환경을 가정하였다. 많은 디바이스와 여러 MEC 서버와 같은 환경으로 최적화에 있어서 복잡성이 발생한다. 이를 해결하기 위해 문제를 두 개로 나눠 해결한다. MEC 서버의 큐 상태를 고려하여 큐의 제한 길이를 충족하는 MEC 서버를 선택한 뒤, 유전 알고리즘을 사용하여 신뢰도를 고려하면서도 에너지 소모량을 최적화하는 오프로딩 결정 알고리즘을 제시한다. 본 연구는 실험을 통하여 에너지 소모량과 신뢰성 측면에서 제안 알고리즘의 성능이 효율적임을 분석하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권6호
/
pp.2422-2443
/
2020
This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1749-1773
/
2024
Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.310-328
/
2022
Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.
5G 의 발전과 함께 차량과 IT 통신 기술을 융합한 어플리케이션들이 급증하면서 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 등장했다. 낮은 지연시간 안에 계산 집약적인 서비스들을 제공하기 위해 단독적인 MECS 서버(MECS)에서의 수행이 아닌 다수의 MECS 에서 동시에 연산을 수행할 수 있도록 태스크를 파티셔닝하는 기법이 주목받고 있다. 특히 차량이 다수의 MECS 로 태스크를 파티셔닝하여 오프로딩하는 기법과 하나의 MECS 로 오프로딩한 후 다른 MECS 들로 파티셔닝하여 마이그레이션하는 기법들이 연구되고 있다. 본 논문에서는 오프로딩과 마이그레이션을 이용한 파티셔닝 기법들을 서비스 지연시간과 차량의 에너지 소비량 측면에서 성능을 비교 분석을 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.