DOI QR코드

DOI QR Code

Resource Management Strategies in Fog Computing Environment -A Comprehensive Review

  • Received : 2022.04.05
  • Published : 2022.04.30

Abstract

Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.

Keywords

References

  1. Ghobaei-Arani, M., Souri, A., & Rahmanian, A. A. ( 2020 ). Resource management approaches in fog computing: a comprehensive review. Journal of Grid Computing, 18 ( 1 ), 1-42. https://doi.org/10.1007/s10723-019-09491-1
  2. Ghobaei-Arani, M., Shamsi, M., Rahmanian, A.A.: An efficient approach for improving virtual machine placement in cloud computing environment. J. Exp. Theor. Artif. Intell. 29 ( 6 ), 1149-1171 ( 2017 ) https://doi.org/10.1080/0952813X.2017.1310308
  3. Souri, A., Asghari, P., Rezaei, R.: Software as a service based CRM providers in the cloud computing: challenges and technical issues. J. Serv. Sci. Res. 9 ( 2 ), 219-237 ( 2017 ) https://doi.org/10.1007/s12927-017-0011-5
  4. Ghobaei-Arani, M., Rahmanian, A.A., Aslanpour, M.S., Dashti, S.E.: CSA-WSC: cuckoo search algorithm for web service composition in cloud environments. Soft. Comput. 22 ( 24 ), 8353-8378 ( 2018 ) https://doi.org/10.1007/s00500-017-2783-4
  5. Ghobaei-Arani, M., Rahmanian, A.A., Shamsi, M., Rasouli-Kenari, A.: A learning-based approach for virtual machine placement in cloud data centers. Int. J. Commun. Syst. 31 ( 8 ), e3537 ( 2018 ) https://doi.org/10.1002/dac.3537
  6. Manasrah, A.M., Gupta, B.: An optimized service broker routing policy based on differential evolution algorithm in fog/cloud environment. Clust. Comput. 22 ( Supplement 1 ), 1639-1653 ( 2017 ) https://doi.org/10.1007/s10586-017-1559-z
  7. Mouradian, C., et al.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials. ( 2017 )
  8. Hong, C.-H. and B. Varghese, Resource Management in Fog/Edge Computing: A Survey. arXiv preprint arXiv: 1810.00305, ( 2018 ) https://doi.org/10.1145/3326066
  9. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Futur. Gener. Comput. Syst. 87, 278-289 ( 2018 ) https://doi.org/10.1016/j.future.2018.04.057
  10. Masip-Bruin, X., Marin-Tordera, E., Jukan, A., Ren, G.J.: Managing resources continuity from the edge to the cloud: architecture and performance. Futur. Gener. Comput. Syst. 79, 777-785 ( 2018 ) https://doi.org/10.1016/j.future.2017.09.036
  11. Tocze, K., Nadjm-Tehrani, S.: A taxonomy for management and optimization of multiple resources in edge computing. Wirel. Commun. Mob. Comput. 2018, 1-23 ( 2018 ) https://doi.org/10.1155/2018/7476201
  12. Dias de Assuncao, M., da Silva Veith, A., Buyya, R.: Distributed data stream processing and edge computing: A survey on resource elasticity and future directions. J. Netw. Comput. Appl. 103, 1-17 ( 2018 ) https://doi.org/10.1016/j.jnca.2017.12.001
  13. Hong, C.-H. and B. Varghese, Resource Management in Fog/Edge Computing: A Survey. arXiv preprint arXiv: 1810.00305, ( 2018 ) https://doi.org/10.1145/3326066
  14. Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends, Architectures, Requirements, and Research Directions. IEEE Access 2018, 6, 47980-48009 https://doi.org/10.1109/access.2018.2866491
  15. Bendechache, M.; Svorobej, S.; Takako Endo, P.; Lynn, T. Simulating Resource Management across the Cloud-to-Thing Continuum: A Survey and Future Directions. Future Internet 2020, 12, 95 https://doi.org/10.3390/fi12060095
  16. Aslanpour, M.S.; Gill, S.S.; Toosi, A.N. Performance evaluation metrics for cloud, fog, and edge computing: A review, taxonomy, benchmarks and standards for future research. Internet Things 2020, 12, 100273 https://doi.org/10.1016/j.iot.2020.100273
  17. Salaht, F.A.; Desprez, F.; Lebre, A. An Overview of Service Placement Problem in Fog and Edge Computing. ACM Comput. Surv. 2020, 53, 1-35 https://doi.org/10.1145/3391196
  18. Agarwal, S.; Yadav, S.; Yadav, A.K. An efficient architecture and algorithm for resource provisioning in fog computing. Int. J. Inf. Eng. Electronic Bus. ( IJIEEB ) 2016, 8, 48-61 https://doi.org/10.5815/ijieeb.2016.01.06
  19. Souri, A., Norouzi, M.: A state-of-the-art survey on formal verification of the internet of things applications. J. Serv. Sci. Res. 11 ( 1 ), 47-67 ( 2019 ) https://doi.org/10.1007/s12927-019-0003-8
  20. Ghobaei-Arani, M., et al.: A moth-flame optimization algorithm for web service composition in cloud computing: simulation and verification. Software: Practice and Experience ( SPE ). 48 ( 10 ), 1865-1892 ( 2018 ) https://doi.org/10.1002/spe.2598
  21. Dastjerdi, A.V., et al., Fog computing: Principles, architectures, and applications, in Internet of Things. Elsevier. p. 61-75 ( 2016 )
  22. Mijuskovic, A., Chiumento, A., Bemthuis, R., Aldea, A., & Havinga, P. ( 2021 ). Resource management techniques for cloud/fog and edge computing: An evaluation framework and classification. Sensors, 21 ( 5 ), 1832. https://doi.org/10.3390/s21051832
  23. Javaid, S.; Javaid, N.; Saba, T.; Wadud, Z.; Rehman, A.; Haseeb, A. Intelligent resource allocation in residential buildings using consumer to fog to cloud based framework. Energies 2019, 12, 815 https://doi.org/10.3390/en12050815
  24. Xu, X.; Fu, S.; Cai, Q.; Tian, W.; Liu, W.; Dou, W.; Sun, X.; Liu, A.X. Dynamic resource allocation for load balancing in fog environment. Wirel. Commun. Mob. Comput. 2018, 2018
  25. Taneja, M.; Davy, A. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management ( IM ), Lisbon, Portugal, 8-12 May 2017; pp. 1222-1228
  26. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized IoT service placement in the fog. SOCA. 11 ( 4 ), 427-443 ( 2017 ) https://doi.org/10.1007/s11761-017-0219-8
  27. Venticinque, S., Amato, A.: A methodology for deployment of IoT application in fog . J . Ambient. Intell. Humaniz. Comput. 10 ( 5 ), 1955-1976 ( 2019 ) https://doi.org/10.1007/s12652-018-0785-4
  28. Mahmoud, M.M.E., Rodrigues, J.J.P.C., Saleem, K., al Muhtadi, J., Kumar, N., Korotaev, V.: Towards energy aware fog-enabled cloud of things for healthcare. Comput. Electr. Eng. 67, 58-69 ( 2018 ) https://doi.org/10.1016/j.compeleceng.2018.02.047
  29. Yangui, S., et al. A platform as-a-service for hybrid cloud / fog environments. In Local and Metropolitan Area Networks ( LANMAN ), 2016 IEEE International Symposium on. IEEE ( 2016 )
  30. Yigitoglu, E., et al. Foggy: A Framework for Continuous Automated IoT Application Deployment in Fog Computing. In AI & Mobile Services ( AIMS ), 2017 IEEE International Conference on. IEEE ( 2017 )
  31. Minh, Q.T., et al. Toward service placement on fog computing landscape. In Information and Computer Science, 2017 4th NAFOSTED Conference on. IEEE ( 2017 )
  32. Saurez, E., et al., Incremental deployment and migration of geo distributed situation awareness applications in the fog. p. 258-269 ( 2016 )
  33. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 4 ( 5 ), 1185-1192 ( 2017 ) https://doi.org/10.1109/JIOT.2017.2701408
  34. Yao, H., Bai, C., Xiong, M., Zeng, D., Fu, Z.: Heterogeneous cloudlet deployment and user-cloudlet association toward cost effective fog computing. Concurrency and Computation: Practice and Experience ( CCPE ). 29 ( 16 ), e3975 ( 2017 ) https://doi.org/10.1002/cpe.3975
  35. Yousefpour, A., et al., QoS-aware Dynamic Fog Service Provisioning. arXiv preprint arXiv:1802.00800 ( 2018 )
  36. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency aware application module Management for fog Computing Environments. ACM Trans. Internet Technol. 19 ( 1 ), 1-21 ( 2018 )
  37. Naranjo, P.G.V., et al., FOCAN: A Fog-supported Smart City Network Architecture for Management of Applications in the Internet of Everything Environments. arXiv preprint arXiv:1710.01801, ( 2017 )
  38. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of experience ( QoE )-aware placement of applications in fog computing environments. J. Parallel Distrib. Comput. 132, 190-203 ( 2019 ) https://doi.org/10.1016/j.jpdc.2018.03.004
  39. Velasquez, K., et al.: Service placement for latency reduction in the internet of things. Ann. Telecommun. 72 ( 1-2 ), 105-115 ( 2016 ) https://doi.org/10.1007/s12243-016-0524-9
  40. Selimi, M., Cerda-Alabern, L., Freitag, F., Veiga, L., Sathiaseelan, A., Crowcroft, J.: A lightweight service placement approach for community network micro-clouds. Journal of Grid Computing ( GRID ). 17 ( 1 ), 169-189 ( 2019 ) https://doi.org/10.1007/s10723-018-9437-3
  41. Bitam, S., Zeadally, S., Mellouk, A.: Fog computing job scheduling optimization based on bees swarm. Enterprise Information Systems ( EIS ). 12 ( 4 ), 373-397 ( 2017 ) https://doi.org/10.1080/17517575.2017.1304579
  42. Sun, Y., Lin, F., Xu, H.: Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II. Wirel. Pers. Commun. 102 ( 2 ), 1369-1385 ( 2018 ) https://doi.org/10.1007/s11277-017-5200-5
  43. De Benedetti, M., et al.: JarvSis: a distributed scheduler for IoT applications. Clust. Comput. 20 ( 2 ), 1775-1790 ( 2017 ) https://doi.org/10.1007/s10586-017-0836-1
  44. Cardellini, V., et al. On QoS-aware scheduling of data stream applications over fog computing infrastructures. In Computers and Communication ( ISCC ), 2015 IEEE Symposium on. IEEE ( 2015 )
  45. Rahbari, D. and M. Nickray. Scheduling of Fog Networks with Optimized Knapsack by Symbiotic Organisms Search. In 2017 21st Conference of Open Innovations Association ( FRUCT ). Finland: IEEE ( 2017 )
  46. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65 ( 12 ), 3702-3712 ( 2016 ) https://doi.org/10.1109/TC.2016.2536019
  47. Pham, X.-Q. and E.-N. Huh. Towards task scheduling in a cloud-fog computing system. In Network Operations and Management Symposium ( APNOMS ), 2016 18th Asia-Pacific. IEEE ( 2016 )
  48. Fan, J., et al. Deadline-Aware Task Scheduling in a Tiered IoT Infrastructure. in GLOBECOM 2017-2017 IEEE Global Communications Conference. Singapore: IEEE ( 2017 )
  49. Sun, Y., Zhang, N.: A resource-sharing model based on a repeated game in fog computing. Saudi journal of biolog ical sciences ( SJBS ). 24 ( 3 ), 687-694 ( 2017 ) https://doi.org/10.1016/j.sjbs.2017.01.043
  50. Chen, X., Wang, L.: Exploring fog computing-based adaptive vehicular data scheduling policies through a compositional formal method-PEPA. IEEE Commun. Lett. 21 ( 4 ), 745-748 ( 2017 ) https://doi.org/10.1109/LCOMM.2016.2647595
  51. Deng, R., et al.: Optimal workload allocation in fog-cloud computing towards balanced delay and power consumption. IEEE Internet Things J. 3 ( 6 ), 1171-1181 ( 2016 ) https://doi.org/10.1109/JIOT.2016.2565516
  52. Hoang, D. and T.D. Dang, FBRC: Optimization of task Scheduling in Fog-Based Region and Cloud. 2017: p. 1109-1114
  53. Tran, D.H., Tran, N.H., Pham, C., Kazmi, S.M.A., Huh, E.N., Hong, C.S.: OaaS: offload as a service in fog net- works. Computing. 99 ( 11 ), 1081-1104 ( 2017 ) https://doi.org/10.1007/s00607-017-0551-z
  54. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 5 ( 1 ), 283-294 ( 2018 ) https://doi.org/10.1109/jiot.2017.2780236
  55. Mukherjee, A., Deb, P., de, D., Buyya, R.: C2OF2N: a low power cooperative code offloading method for femtolet- based fog network. J. Super comput. 74 ( 6 ), 2412-2448 ( 2018 ) https://doi.org/10.1007/s11227-018-2269-x
  56. Wang, X., Ning, Z., Wang, L.: Offloading in internet of vehicles: a fog-enabled real-time traffic management sys- tem. IEEE Trans. Ind. Inf. 14 ( 10 ), 4568-4578 ( 2018 ) https://doi.org/10.1109/tii.2018.2816590
  57. Xu, J. and S. Ren. Online learning for offloading and auto scaling in renewable- powered mobile edge computing. In Global Communications Conference ( GLOBECOM ), 2016 IEEE. IEEE ( 2016 )
  58. Liu, L., Z. Chang, and X. Guo, Socially-aware Dynamic Computation Offloading Scheme for Fog Computing System with Energy Harvesting Devices. IEEE Internet Things J.. p. 1-1 ( 2018 )
  59. Ye, D., et al., Scalable Fog Computing with Service Offloading in Bus Networks. p. 247-251 ( 2016 )
  60. Zhao, X., L. Zhao, and K. Liang. An Energy Consumption Oriented Offloading Algorithm for Fog Computing. In International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness. Springer ( 2016 )
  61. Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: A dynamic tradeoff data processing frame- work for delay-sensitive applications in cloud of things systems. J. Parallel Distrib. Comput. 112, 53-66 ( 2018 ) https://doi.org/10.1016/j.jpdc.2017.09.009
  62. Meng, X., Wang, W., Zhang, Z.: Delay-constrained hybrid computation offloading with cloud and fog computing. IEEE ( ACCESS ). 5, 21355-21367 ( 2017 ) https://doi.org/10.1109/ACCESS.2017.2748140
  63. Chamola, V., C.-K. Tham, and G.S. Chalapathi. Latency aware mobile task assignment and load balancing for edge cloudlets. In Pervasive Computing and Communications Workshops ( PerCom Workshops ), 2017 IEEE International Conference on. IEEE ( 2017 )
  64. Khan, J.A., C. Westphal, and Y. Ghamri-Doudane. Offloading Content with Self-organizing Mobile Fogs. In Teletraffic Congress ( ITC 29 ), 2017 29th International. IEEE ( 2017 )
  65. Alam, M.G.R., Y.K. Tun, and C.S. Hong. Multi-agent and reinforcement learning based code offloading in mobile fog. In Information Networking ( ICOIN ), 2016 International Conference on. IEEE ( 2016 )
  66. Bozorgchenani, A., D. Tarchi, and G.E. Corazza. An Energy-Aware Offloading Clustering Approach ( EAOCA ) in fog computing. In Wireless Communication Systems ( ISWCS ), 2017 International Symposium on. IEEE ( 2017 )
  67. Ahn,S.,M. Gorlatova, and M. Chiang. Leveraging fog and cloud computing for efficient computational offloading. In Undergraduate Research Technology Conference ( URTC ), 2017 IEEE MIT. IEEE ( 2017 )
  68. Zhu, Q., Si, B., Yang, F., Ma, Y.: Task offloading decision in fog computing system. China Communications ( Chinacom ). 14 ( 11 ), 59-68 ( 2017 ) https://doi.org/10.1109/cc.2017.8233651
  69. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for Mobile-edge cloud computing. IEEE/ACM Trans. Networking. 24 ( 5 ), 2795-2808 ( 2016 ) https://doi.org/10.1109/TNET.2015.2487344
  70. Chang, Z., et al. Energy Efficient Optimization for Computation Offloading in Fog Computing System. In GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE ( 2017 )
  71. Kattepur, A., et al. Resource constrained offloading in fog computing. In Proceedings of the 1st Workshop on Middleware for Edge Clouds & Cloudlets. ACM ( 2016 )
  72. Bozorgchenani, A., D. Tarchi, and G.E. Corazza. An Energy and Delay-Efficient Partial Offloading Technique for Fog Computing Architectures. In GLOBECOM 2017- 2017 IEEE Global Communications Conference. IEEE ( 2017 )
  73. Xiong, Z., et al.: Cloud/fog computing resource manage- ment and pricing for blockchain networks. IEEE Internet Things J. 6 ( 3 ), 4585-4600 ( 2018 ) https://doi.org/10.1109/jiot.2018.2871706
  74. Li, C., Zhuang, H., Wang, Q., Zhou, X.: SSLB: self- similarity- based load balancing for large- scale fog computing. Arab. J. Sci. Eng. 43 ( 12 ), 7487-7498 ( 2018 ) https://doi.org/10.1007/s13369-018-3169-3
  75. Shi, C., Z. Ren, and X. He, Research on Load Balancing for Software Defined Cloud-Fog Network in Real-Time Mobile Face Recognition. 210: p. 121-131 ( 2018 )
  76. Manasrah, A.M., A.a. Aldomi, and B.B. Gupta, An opti- mized service broker routing policy based on differential evolution algorithm in fog/cloud environment. Cluster Computing, ( 2017 )
  77. He, X., Ren, Z., Shi, C., Fang, J.: A novel load balancing strategy of software-defined cloud/fog networking in the internet of vehicles. China Communications ( Chinacom ). 13 ( 2 ), 140-149 ( 2016 ) https://doi.org/10.1109/CC.2016.7405730
  78. Beraldi, R., A. Mtibaa, and H. Alnuweiri. Cooperative load balancing scheme for edge computing resources. In Fog and Mobile Edge Computing ( FMEC ), 2017 Second International Conference on. IEEE ( 2017 )
  79. Ningning, S., Chao, G., Xingshuo, A., Qiang, Z.: Fog computing dynamic load balancing mechanism based on graph repartitioning. China Communications ( Chinacom ). 13 ( 3 ), 156-164 ( 2016 ) https://doi.org/10.1109/CC.2016.7445510
  80. Oueis, J., E.C. Strinati, and S. Barbarossa. The fog balancing: Load distribution for small cell cloud comput- ing. In Vehicular Technology Conference ( VTC Spring ), 2015 IEEE 81st. IEEE ( 2015 )
  81. Yu,Y., X. Li, and C. Qian. SDLB: A Scalable and Dynamic Software Load Balancer for Fog and Mobile Edge Computing. In Proceedings of the Workshop on Mobile Edge Communications. ACM ( 2017 )
  82. Neto, E.C.P., G. Callou, and F. Aires. An algorithm to optimise the load distribution of fog environments. In Systems, Man, and Cybernetics ( SMC ), 2017 IEEE International Conference on. . IEEE ( 2017 )
  83. Gu, L., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: Cost efficient resource management in fog computing supported medical cyberphysical system. IEEE Trans. Emerg. Top. Comput. 5 ( 1 ), 108-119 ( 2017 ) https://doi.org/10.1109/TETC.2015.2508382
  84. Kapsalis, A., Kasnesis, P., Venieris, I.S., Kaklamani, D.I., Patrikakis, C.Z.: A cooperative fog approach for effective workload balancing. IEEE Cloud Computing. 4 ( 2 ), 36-45 ( 2017 ) https://doi.org/10.1109/MCC.2017.25
  85. Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., Liu, A.X.: Dynamic resource allocation for load balancing in fog environment. Wirel. Commun. Mob. Comput. 2018, 1-15 ( 2018 )
  86. Verma, S., et al. An efficient data replication and load balancing technique for fog computing environment. In Computing for Sustainable Global Development ( INDIACom ), 2016 3rd International Conference on. IEEE ( 2016 )
  87. Ni, L., Zhang, J., Jiang, C., Yan, C., Yu, K.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4 ( 5 ), 1216-1228 ( 2017 ) https://doi.org/10.1109/JIOT.2017.2709814
  88. Zhang, Y., et al., Resource Allocation in Software Defined Fog Vehicular Networks. 2017: p. 71-76
  89. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource allocation in three-tier IoT fog net- works: a joint optimization approach combining Stackelberg game and matching. IEEE Internet Things J. 4 ( 5 ), 1204-1215 ( 2017 ) https://doi.org/10.1109/JIOT.2017.2688925
  90. Do, C.T., et al. A proximal algorithm for joint re- source allocation and minimizing carbon footprint in geo-distributed fog computing. In Information Networking ( ICOIN ), 2015 International Conference on. IEEE ( 2015 )
  91. Alsaffar,A.A.,Pham,H.P.,Hong,C.S.,Huh,E.N.,Aazam, M.: An architecture of IoTservice delegation and resource allocation based on collaboration between fog and cloud computing. Mob. Inf. Syst. 2016, 1-15 ( 2016 )
  92. Zhang, H., Zhang, Y., Gu, Y., Niyato, D., Han, Z.: A hierarchical game framework for resource management in fog computing. IEEE Commun. Mag. 55 ( 8 ), 52-57 ( 2017 ) https://doi.org/10.1109/MCOM.2017.1600896
  93. Aazam, M., et al., IoT resource estimation challenges and modeling in fog, in Fog Computing in the Internet of Things, Springer. p. 17-31 ( 2018 )
  94. Sood, S.K., Singh, K.D.: SNA based resource optimization in optical network using fog and cloud computing. Opt. Switch. Netw. 33 ( July ), 114-121 ( 2017 ) https://doi.org/10.1016/j.osn.2017.12.007
  95. Naranjo, P.G., et al.: Fog over virtualized IoT: new oppor- tunity for context-aware networked applications and a case study. Appl. Sci. 7 ( 12 ), 1325 ( 2017 ) https://doi.org/10.3390/app7121325
  96. Anglano, C.,M. Canonico, and M. Guazzone. Profit-aware resource management for edge computing systems. In Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking. ACM ( 2018 )
  97. Jiao,Y.,etal.:Auction mechanisms in cloud / fog computing resource allocation for public Block chain networks. IEEE Trans. Parallel Distrib. Syst. 30 ( 9 ), 1975-1989 ( 2018 ) https://doi.org/10.1109/tpds.2019.2900238
  98. El Kafhali, S., Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. J. Super comput. 73 ( 12 ), 5261-5284 ( 2017 ) https://doi.org/10.1007/s11227-017-2083-x
  99. Wang, N., et al., ENORM: A Framework For Edge Node Resource Management. IEEE Transactions on Services Computing. Early access: p. 1-1 ( 2017 )
  100. Tseng, F.-H., Tsai, M.S., Tseng, C.W., Yang, Y.T., Liu, C.C., Chou, L.D.: A lightweight auto-scaling mechanism for fog computing in industrial applications. IEEE Trans. Ind. Inf. 14 ( 10 ), 4529-4537 ( 2018 https://doi.org/10.1109/tii.2018.2799230
  101. Dos Santos, X., et al. Resource provisioning for IoT appli- cation services in Smart Cities. in CNSM2017, the 13e International Conference on Network and Service Management. ( 2017 )
  102. Arkian, H.R., Diyanat, A., Pourkhalili, A.: MIST: fog- based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications. J. Netw. Comput. Appl. 82, 152-165 ( 2017 ) https://doi.org/10.1016/j.jnca.2017.01.012
  103. Vinueza Naranjo, P.G., E. Baccarelli, and M. Scarpiniti, Design and energy-efficient resource management of virtualized networked Fog architectures for the real-time support of IoT applications. J. Super comput., 2018. 74 ( 6 ): p. 2470-2507 https://doi.org/10.1007/s11227-018-2274-0
  104. Ostberg, P.-O., et al. Reliable capacity provisioning for distributed cloud/edge/fog computing applications. In Networks and Communications ( EuCNC ), 2017 European Conference on. IEEE ( 2017 )
  105. Zanni, A., et al. Elastic Provisioning of Internet of Things Services Using Fog Computing: An Experience Report. In 2018 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering ( MobileCloud ). IEEE ( 2018 )
  106. Skarlat, O., et al. Resource provisioning for IoTservices in the fog. In Service-Oriented Computing and Applications ( SOCA ), 2016 IEEE 9th International Conference on. IEEE ( 2016 )
  107. Russo Russo, G., Nardelli, M., Cardellini, V., Lo Presti, F.: Multi-level elasticity for wide-area data streaming systems: a reinforcement learning approach. Algorithms. 11 ( 9 ), 134 ( 2018 ) https://doi.org/10.3390/a11090134