• Title/Summary/Keyword: Target-object Recognition

Search Result 130, Processing Time 0.022 seconds

Semi-automatic Camera Calibration Using Quaternions (쿼터니언을 이용한 반자동 카메라 캘리브레이션)

  • Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The camera is a key element in image-based three-dimensional positioning, and camera calibration, which properly determines the internal characteristics of such a camera, is a necessary process that must be preceded in order to determine the three-dimensional coordinates of the object. In this study, a new methodology was proposed to determine interior orientation parameters of a camera semi-automatically without being influenced by size and shape of checkerboard for camera calibration. The proposed method consists of exterior orientation parameters estimation using quaternion, recognition of calibration target, and interior orientation parameter determination through bundle block adjustment. After determining the interior orientation parameters using the chessboard calibration target, the three-dimensional position of the small 3D model was determined. In addition, the horizontal and vertical position errors were about ${\pm}0.006m$ and ${\pm}0.007m$, respectively, through the accuracy evaluation using the checkpoints.

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

Detection and Identification of Moving Objects at Busy Traffic Road based on YOLO v4 (YOLO v4 기반 혼잡도로에서의 움직이는 물체 검출 및 식별)

  • Li, Qiutan;Ding, Xilong;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.141-148
    • /
    • 2021
  • In some intersections or busy traffic roads, there are more pedestrians in a specific period of time, and there are many traffic accidents caused by road congestion. Especially at the intersection where there are schools nearby, it is particularly important to protect the traffic safety of students in busy hours. In the past, when designing traffic lights, the safety of pedestrians was seldom taken into account, and the identification of motor vehicles and traffic optimization were mostly studied. How to keep the road smooth as far as possible under the premise of ensuring the safety of pedestrians, especially students, will be the key research direction of this paper. This paper will focus on person, motorcycle, bicycle, car and bus recognition research. Through investigation and comparison, this paper proposes to use YOLO v4 network to identify the location and quantity of objects. YOLO v4 has the characteristics of strong ability of small target recognition, high precision and fast processing speed, and sets the data acquisition object to train and test the image set. Using the statistics of the accuracy rate, error rate and omission rate of the target in the video, the network trained in this paper can accurately and effectively identify persons, motorcycles, bicycles, cars and buses in the moving images.

Effect on NCOs and students of self-leadershiployment career (부사관과 학생들의 셀프리더십이 취업진로에 미치는 영향)

  • Kwon, Jung-Min;Lee, Han-Kyu
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.109-118
    • /
    • 2017
  • The study examines whether there is support for undergraduate students of Department of NCOs leadership needs and self-perceived any casualty, the purpose being placed to identify the cause-and effect relationship between student's behavior and these self-appointed leadership needs parameters. To study this end, the men and women college students Military major in Busan district using the convenience of the student sample extraction to extract the 362 students. Setting the model to achieve the object of the study, and then through a structural equation model (SEM) were studies a causal relationship among variables. Result on the basis of the research study model verification method as described above what is derived from this study were as follows. First, self-leadership is confirmed in the career planning of clarity on the impact of career beliefs centered strategies(+) target-oriented strategy(+), and independent self-reliance, check-centered strategies(+), constructive thinking strategies(+), ERA=centric strategy(+), in the natural course flexibility, compensation strategies(+), constructive thinking strategies(+) improve professional skills appeared to affect the check-centered strategies(+), ERA-centered strategies(+). Second, self-leadership is general satisfaction at the impact of major satisfaction natural reward strategies(+), the curriculum meets the natural reward strategies(+) target-oriented strategy(+) recognition satisfy the natural reward strategies(+) target-oriented strategy(+) appeared to affect this. Third, career beliefs Major General satisfaction in the impact on satisfaction Career Planning Clarity(+), an independent self-reliance(+), career flexibility(+)improve professional skills(+), the curriculum satisfies independent self-reliance(+), career flexibility(+) improve professional skills(+), the self-satisfied recognized independent trust(+), career flexibility(+), career planning clarity(+) it appeared to influence this.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Effective Detection of Target Region Using a Machine Learning Algorithm (기계 학습 알고리즘을 이용한 효과적인 대상 영역 분할)

  • Jang, Seok-Woo;Lee, Gyungju;Jung, Myunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.697-704
    • /
    • 2018
  • Since the face in image content corresponds to individual information that can distinguish a specific person from other people, it is important to accurately detect faces not hidden in an image. In this paper, we propose a method to accurately detect a face from input images using a deep learning algorithm, which is one of the machine learning methods. In the proposed method, image input via the red-green-blue (RGB) color model is first changed to the luminance-chroma: blue-chroma: red-chroma ($YC_bC_r$) color model; then, other regions are removed using the learned skin color model, and only the skin regions are segmented. A CNN model-based deep learning algorithm is then applied to robustly detect only the face region from the input image. Experimental results show that the proposed method more efficiently segments facial regions from input images. The proposed face area-detection method is expected to be useful in practical applications related to multimedia and shape recognition.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.

Path Planing for a Moving Robot using Ultra Sonic Sensors (초음파 센서를 이용한 이동로봇의 경로 계획)

  • Cha, Kyung-Hwan;Shin, Hyun-Shil;Hwang, Gi-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.78-83
    • /
    • 2007
  • Robot collects surrounding information to recognize tile unknown environment by using various sensors such as visual, infrared ray and ultra sonic sensors. Although visual sensor is the most popular one, it has some difficulties in collecting data in dark or too bright environment due to sensitivity of the light. It also requests significant amount of calculation on collecting data from certain images with marked, straight and curved ones. As an alternative, ultra sonic sensor can simply overcome this visual sensing system's flaw and easily be used. It is easier than visual system, especially in case of collecting data on object and distance in dark environment. Ultra sonic sensor can replace the expensive visual sensing system not only in avoiding obstacles but also in reaching to the target area smoothly. The purpose of this paper is to develop the algorithm to optimize the environmental recognition, path planning and free-ranging by minimizing errors caused by inaccurate information and by considering characteristics of the ultra sonic rays such as refraction and diffusion. This paper also realizes the system that can recognize the environment and make the appropriate path planning by applying the algorithm on this moving robot.

  • PDF